Uses of Class
edu.harvard.seas.iis.abilities.classify.DataSet

Packages that use DataSet
edu.harvard.seas.iis.abilities.classify   
 

Uses of DataSet in edu.harvard.seas.iis.abilities.classify
 

Subclasses of DataSet in edu.harvard.seas.iis.abilities.classify
 class UserDataSet
           
 

Methods in edu.harvard.seas.iis.abilities.classify that return DataSet
 DataSet ClassifierEvaluator.annotateDataSet(DataSet dataSet, weka.classifiers.Classifier c, InstanceFilter filter)
          Fills in the "Prediction probability" and "Predicted class" values in the dataSet using classifier c.
 DataSet MovementClassifier.classifyMovements(DataSet movements, boolean useTargetInformation)
          Assumes the movements data set has "Predicted class" and "Prediction probability" attributes present.
static DataSet Clean.cleanOnRawValues(DataSet fullDdataSet)
          Method from removing obviously problematic instances (very low IDs, missed clicks, clicks on unknown targets)
static DataSet Clean.cleanOnTransformedData(DataSet fullDdataSet)
          Method from removing outliers from the data.
static DataSet Transform.combineDataSets(java.io.File inputDirectory, java.lang.String[] userNames, java.io.File outputFile)
          Combine data sets for several users into a single file
static DataSet Transform.computeAdditonalFeatures(DataSet dataSet)
           
static DataSet Transform.computeParticipantCodes(DataSet dataSet)
           
static DataSet DataSet.fromArffFile(java.io.File f)
          A convenience method that creates an instance of a UserDataSet from an ARFF file
static DataSet DataSet.fromArffFiles(java.io.File[] files)
          Creates a single UserDataSet object from multiple ARFF files
 DataSet ClassifierEvaluator.getDeliberateInstances(weka.classifiers.Classifier c, DataSet d)
          Returns a copy of the data set that only contains instances positively classified by c
 DataSet DataSet.getExplicitInstances()
          Convenience method which returns a subset of the data containing only explicit examples
 DataSet DataSet.getImplicitInstances()
          Convenience method which returns a subset of the data containing only implicit examples
 DataSet DataSet.getInstancesForUser(java.lang.String user)
           
 DataSet DataSet.getInstancesWithAttributeValueEqual(weka.core.Attribute att, java.lang.String attVal)
           
 DataSet DataSet.getInstancesWithAttributeValueGreaterThan(weka.core.Attribute att, double attVal)
           
 DataSet DataSet.getInstancesWithAttributeValueNotEqual(weka.core.Attribute att, java.lang.String attVal)
           
 DataSet DataSet.getInstancesWithAttributeValues(weka.core.Attribute att, java.util.Collection<java.lang.String> values)
           
static DataSet Transform.normalize(DataSet oldData, java.lang.String[] attributesToNormalize, java.lang.String[] usersToUseForComputingNormalizationConstants, NormalizationConstants normalizationConstants)
          Normalizes listed features (zero mean and unit stdev); unlike the other normalize() method, it does not attempt to separate the users -- if you want normalization per user, feed it separate data sets for each user
static DataSet Transform.normalizeUsingNormalizationConstants(DataSet dataSet, java.lang.String[] attributesToNormalize, NormalizationConstants normalizationConstants)
          This method uses the constants provided in the normalizationConstants to perform the normalization
 

Methods in edu.harvard.seas.iis.abilities.classify with parameters of type DataSet
 DataSet ClassifierEvaluator.annotateDataSet(DataSet dataSet, weka.classifiers.Classifier c, InstanceFilter filter)
          Fills in the "Prediction probability" and "Predicted class" values in the dataSet using classifier c.
 DataSet MovementClassifier.classifyMovements(DataSet movements, boolean useTargetInformation)
          Assumes the movements data set has "Predicted class" and "Prediction probability" attributes present.
static DataSet Clean.cleanOnRawValues(DataSet fullDdataSet)
          Method from removing obviously problematic instances (very low IDs, missed clicks, clicks on unknown targets)
static DataSet Clean.cleanOnTransformedData(DataSet fullDdataSet)
          Method from removing outliers from the data.
static DataSet Transform.computeAdditonalFeatures(DataSet dataSet)
           
static double[] ClassifierEvaluator.computeFittsLawCoefficients(DataSet dataSet)
           
static DataSet Transform.computeParticipantCodes(DataSet dataSet)
           
 ClassifierEvalStats FeatureSelection.crossvalidateOverUsers(weka.classifiers.Classifier c, DataSet dataSet, java.lang.String[] usersToEvaluateOn, boolean annotateDataSet)
          Performs a per-user crossvalidation; evaluation is performed on users listed in usersToEvaluateOn; the dataSet may have data from more users -- that's ok, the data from those users are used for training but not for evaluation
 java.lang.String ClassifierEvaluator.crossvalidateOverUsers(weka.classifiers.Classifier c, DataSet dataSet, java.lang.String[] users, boolean generateAnnotatedDataSet)
           
 double[] ClassifierEvaluator.evaluate(weka.classifiers.Classifier c, DataSet testData)
          Evaluate a trained classifier c on a particular test data set
 ClassifierEvalStats FeatureSelection.evaluateFeatureSet(java.lang.String[] features, PositiveAndUnlabeledClassifier c, DataSet dataSet, boolean annotateDataSet)
          Uses crossvalidation to evaluate a particular classifier on a particular set of features on a particular data set
static java.lang.Double[] DataDiagnostics.getBasicAttributeStats(DataSet dataSet)
           
static java.lang.Double[] DataDiagnostics.getBasicStats(DataSet dataSet, boolean computeFittsStats)
           
 DataSet ClassifierEvaluator.getDeliberateInstances(weka.classifiers.Classifier c, DataSet d)
          Returns a copy of the data set that only contains instances positively classified by c
static java.lang.Double[] DataDiagnostics.getPerAttributeCorrelations(DataSet dataSet)
           
static java.lang.Double[] DataDiagnostics.getTTests(DataSet dataSet)
           
static DataSet Transform.normalize(DataSet oldData, java.lang.String[] attributesToNormalize, java.lang.String[] usersToUseForComputingNormalizationConstants, NormalizationConstants normalizationConstants)
          Normalizes listed features (zero mean and unit stdev); unlike the other normalize() method, it does not attempt to separate the users -- if you want normalization per user, feed it separate data sets for each user
static void Transform.normalizeAttribute(DataSet data, int attIndex, double mean, double var)
           
static DataSet Transform.normalizeUsingNormalizationConstants(DataSet dataSet, java.lang.String[] attributesToNormalize, NormalizationConstants normalizationConstants)
          This method uses the constants provided in the normalizationConstants to perform the normalization
 double[] ClassifierEvaluator.runStatisticalTests(DataSet baseLine, DataSet testSet, java.lang.String[] users, java.lang.String attributeForTesting, int minNumberRequiredForTesting)
          Runs pairwise statistical tests to look for statistically significant differences across users on several metrics.
 double FeatureSelection.search(java.util.List<java.lang.String> startingFeatures, java.lang.String[] allowedFeatures, PositiveAndUnlabeledClassifier c, DataSet dataSet, java.lang.String prefix, double bestOEC)
          Given a starting set of features, searches for the best set of features to use with a particular classifier