|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use DataSet | |
---|---|
edu.harvard.seas.iis.abilities.classify |
Uses of DataSet in edu.harvard.seas.iis.abilities.classify |
---|
Subclasses of DataSet in edu.harvard.seas.iis.abilities.classify | |
---|---|
class |
UserDataSet
|
Methods in edu.harvard.seas.iis.abilities.classify that return DataSet | |
---|---|
DataSet |
ClassifierEvaluator.annotateDataSet(DataSet dataSet,
weka.classifiers.Classifier c,
InstanceFilter filter)
Fills in the "Prediction probability" and "Predicted class" values in the dataSet using classifier c. |
DataSet |
MovementClassifier.classifyMovements(DataSet movements,
boolean useTargetInformation)
Assumes the movements data set has "Predicted class" and "Prediction probability" attributes present. |
static DataSet |
Clean.cleanOnRawValues(DataSet fullDdataSet)
Method from removing obviously problematic instances (very low IDs, missed clicks, clicks on unknown targets) |
static DataSet |
Clean.cleanOnTransformedData(DataSet fullDdataSet)
Method from removing outliers from the data. |
static DataSet |
Transform.combineDataSets(java.io.File inputDirectory,
java.lang.String[] userNames,
java.io.File outputFile)
Combine data sets for several users into a single file |
static DataSet |
Transform.computeAdditonalFeatures(DataSet dataSet)
|
static DataSet |
Transform.computeParticipantCodes(DataSet dataSet)
|
static DataSet |
DataSet.fromArffFile(java.io.File f)
A convenience method that creates an instance of a UserDataSet from an ARFF file |
static DataSet |
DataSet.fromArffFiles(java.io.File[] files)
Creates a single UserDataSet object from multiple ARFF files |
DataSet |
ClassifierEvaluator.getDeliberateInstances(weka.classifiers.Classifier c,
DataSet d)
Returns a copy of the data set that only contains instances positively classified by c |
DataSet |
DataSet.getExplicitInstances()
Convenience method which returns a subset of the data containing only explicit examples |
DataSet |
DataSet.getImplicitInstances()
Convenience method which returns a subset of the data containing only implicit examples |
DataSet |
DataSet.getInstancesForUser(java.lang.String user)
|
DataSet |
DataSet.getInstancesWithAttributeValueEqual(weka.core.Attribute att,
java.lang.String attVal)
|
DataSet |
DataSet.getInstancesWithAttributeValueGreaterThan(weka.core.Attribute att,
double attVal)
|
DataSet |
DataSet.getInstancesWithAttributeValueNotEqual(weka.core.Attribute att,
java.lang.String attVal)
|
DataSet |
DataSet.getInstancesWithAttributeValues(weka.core.Attribute att,
java.util.Collection<java.lang.String> values)
|
static DataSet |
Transform.normalize(DataSet oldData,
java.lang.String[] attributesToNormalize,
java.lang.String[] usersToUseForComputingNormalizationConstants,
NormalizationConstants normalizationConstants)
Normalizes listed features (zero mean and unit stdev); unlike the other normalize() method, it does not attempt to separate the users -- if you want normalization per user, feed it separate data sets for each user |
static DataSet |
Transform.normalizeUsingNormalizationConstants(DataSet dataSet,
java.lang.String[] attributesToNormalize,
NormalizationConstants normalizationConstants)
This method uses the constants provided in the normalizationConstants to perform the normalization |
Methods in edu.harvard.seas.iis.abilities.classify with parameters of type DataSet | |
---|---|
DataSet |
ClassifierEvaluator.annotateDataSet(DataSet dataSet,
weka.classifiers.Classifier c,
InstanceFilter filter)
Fills in the "Prediction probability" and "Predicted class" values in the dataSet using classifier c. |
DataSet |
MovementClassifier.classifyMovements(DataSet movements,
boolean useTargetInformation)
Assumes the movements data set has "Predicted class" and "Prediction probability" attributes present. |
static DataSet |
Clean.cleanOnRawValues(DataSet fullDdataSet)
Method from removing obviously problematic instances (very low IDs, missed clicks, clicks on unknown targets) |
static DataSet |
Clean.cleanOnTransformedData(DataSet fullDdataSet)
Method from removing outliers from the data. |
static DataSet |
Transform.computeAdditonalFeatures(DataSet dataSet)
|
static double[] |
ClassifierEvaluator.computeFittsLawCoefficients(DataSet dataSet)
|
static DataSet |
Transform.computeParticipantCodes(DataSet dataSet)
|
ClassifierEvalStats |
FeatureSelection.crossvalidateOverUsers(weka.classifiers.Classifier c,
DataSet dataSet,
java.lang.String[] usersToEvaluateOn,
boolean annotateDataSet)
Performs a per-user crossvalidation; evaluation is performed on users listed in usersToEvaluateOn; the dataSet may have data from more users -- that's ok, the data from those users are used for training but not for evaluation |
java.lang.String |
ClassifierEvaluator.crossvalidateOverUsers(weka.classifiers.Classifier c,
DataSet dataSet,
java.lang.String[] users,
boolean generateAnnotatedDataSet)
|
double[] |
ClassifierEvaluator.evaluate(weka.classifiers.Classifier c,
DataSet testData)
Evaluate a trained classifier c on a particular test data set |
ClassifierEvalStats |
FeatureSelection.evaluateFeatureSet(java.lang.String[] features,
PositiveAndUnlabeledClassifier c,
DataSet dataSet,
boolean annotateDataSet)
Uses crossvalidation to evaluate a particular classifier on a particular set of features on a particular data set |
static java.lang.Double[] |
DataDiagnostics.getBasicAttributeStats(DataSet dataSet)
|
static java.lang.Double[] |
DataDiagnostics.getBasicStats(DataSet dataSet,
boolean computeFittsStats)
|
DataSet |
ClassifierEvaluator.getDeliberateInstances(weka.classifiers.Classifier c,
DataSet d)
Returns a copy of the data set that only contains instances positively classified by c |
static java.lang.Double[] |
DataDiagnostics.getPerAttributeCorrelations(DataSet dataSet)
|
static java.lang.Double[] |
DataDiagnostics.getTTests(DataSet dataSet)
|
static DataSet |
Transform.normalize(DataSet oldData,
java.lang.String[] attributesToNormalize,
java.lang.String[] usersToUseForComputingNormalizationConstants,
NormalizationConstants normalizationConstants)
Normalizes listed features (zero mean and unit stdev); unlike the other normalize() method, it does not attempt to separate the users -- if you want normalization per user, feed it separate data sets for each user |
static void |
Transform.normalizeAttribute(DataSet data,
int attIndex,
double mean,
double var)
|
static DataSet |
Transform.normalizeUsingNormalizationConstants(DataSet dataSet,
java.lang.String[] attributesToNormalize,
NormalizationConstants normalizationConstants)
This method uses the constants provided in the normalizationConstants to perform the normalization |
double[] |
ClassifierEvaluator.runStatisticalTests(DataSet baseLine,
DataSet testSet,
java.lang.String[] users,
java.lang.String attributeForTesting,
int minNumberRequiredForTesting)
Runs pairwise statistical tests to look for statistically significant differences across users on several metrics. |
double |
FeatureSelection.search(java.util.List<java.lang.String> startingFeatures,
java.lang.String[] allowedFeatures,
PositiveAndUnlabeledClassifier c,
DataSet dataSet,
java.lang.String prefix,
double bestOEC)
Given a starting set of features, searches for the best set of features to use with a particular classifier |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |