edu.harvard.seas.iis.abilities.classify
Class PositiveAndUnlabeledClassifier
java.lang.Object
weka.classifiers.Classifier
edu.harvard.seas.iis.abilities.classify.PositiveAndUnlabeledClassifier
- All Implemented Interfaces:
- java.io.Serializable, java.lang.Cloneable, weka.core.CapabilitiesHandler, weka.core.OptionHandler, weka.core.RevisionHandler
public class PositiveAndUnlabeledClassifier
- extends weka.classifiers.Classifier
- Author:
- Charles Herrmann, kgajos
This classifier learns from positive and unlabeled examples. It is an
implementation of the methods described in
Elkan, C., & Noto, K. (2008). Learning classifiers from only positive
and unlabeled data. KDD '08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining.
- See Also:
- Serialized Form
Methods inherited from class weka.classifiers.Classifier |
debugTipText, forName, getCapabilities, getDebug, getOptions, getRevision, listOptions, makeCopies, makeCopy, setDebug, setOptions |
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
PositiveAndUnlabeledClassifier
public PositiveAndUnlabeledClassifier()
throws java.lang.Exception
- Throws:
java.lang.Exception
PositiveAndUnlabeledClassifier
public PositiveAndUnlabeledClassifier(weka.classifiers.Classifier baseClassifier)
PositiveAndUnlabeledClassifier
public PositiveAndUnlabeledClassifier(weka.classifiers.Classifier baseClassifier,
java.lang.String[] features)
- Parameters:
baseClassifier
- the underlying probabilistic classifier (See the paper for
more details);features
- names of features that should be used by the classifier (this
allows for some features to be ignored); this list has to
include the "Class" feature
getMethodForEvaluatingC
public int getMethodForEvaluatingC()
setMethodForEvaluatingC
public void setMethodForEvaluatingC(int methodForEvaluatingC)
getAllowedFeatures
public java.lang.String[] getAllowedFeatures()
setAllowedFeatures
public void setAllowedFeatures(java.lang.String[] allowedFeatures)
classifyInstance
public double classifyInstance(weka.core.Instance point)
throws java.lang.Exception
- Overrides:
classifyInstance
in class weka.classifiers.Classifier
- Throws:
java.lang.Exception
getDeliberateProbability
public double getDeliberateProbability(weka.core.Instance point)
throws java.lang.Exception
- Returns the probability that a particular movement (represented by the
Instance) was deliberate
- Parameters:
point
-
- Returns:
-
- Throws:
java.lang.Exception
distributionForInstance
public double[] distributionForInstance(weka.core.Instance inst)
throws java.lang.Exception
- Overrides:
distributionForInstance
in class weka.classifiers.Classifier
- Throws:
java.lang.Exception
buildClassifier
public void buildClassifier(weka.core.Instances trainSet)
throws java.lang.Exception
- Specified by:
buildClassifier
in class weka.classifiers.Classifier
- Throws:
java.lang.Exception
buildClassifier1
public void buildClassifier1(weka.core.Instances trainSet)
throws java.lang.Exception
- Throws:
java.lang.Exception
buildClassifier2
public void buildClassifier2(weka.core.Instances trainSet)
throws java.lang.Exception
- Throws:
java.lang.Exception
buildClassifier3
public void buildClassifier3(weka.core.Instances trainSet)
throws java.lang.Exception
- Throws:
java.lang.Exception
deserializeFromFile
public static PositiveAndUnlabeledClassifier deserializeFromFile(java.io.File f)
throws java.io.IOException,
java.lang.ClassNotFoundException
- Throws:
java.io.IOException
java.lang.ClassNotFoundException
toString
public java.lang.String toString()
- Overrides:
toString
in class java.lang.Object