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Abstract

Online collective ideation platforms, such as OpenIDEO or Quirky, have demonstrated

the potential of large-scale collective innovation in various domains. However, the users of

these platforms face new challenges of leveraging collective contributions. The large number

of collected ideas prevents users from making full use of these ideas. Finding inspirations

from the ideas involves wading through a sea of possibly mundane and redundant ideas.

Synthesizing a few solutions from these ideas takes a lot of time and e�ort. I argue that

leaving users to explore ideas in a haphazard manner is ine�ective and can decrease the

quality of people’s creative output. Prior work in cognitive science and creativity research has

also suggested that deliberate exploration of the solution space can improve users’ creative

output and experience.

I introduce the concept of an idea map, a computational model of the emerging solution

space that enables deliberate exploration interactions: 1) presenting a set of ideas with a

controlled level of diversity appropriate to the stage of the creative process and 2) presenting

a summary view of the solution space. I describe two scalable crowdsourced methods for

generating this computational model. The first method computes the model from responses

from small micro-task questions. The second method takes an “integrated crowdsourcing”

approach that computes the model from users’ natural activities during idea generation.

The evaluation of the derived models show that the idea maps from both approaches agree

with human judgments of similarities among ideas. I show the application of the idea map

concept through experiments and a system called IdeaHound. IdeaHound derives an

idea map using the integrated crowdsourcing approach and uses the derived model to guide
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users’ exploration of the solution space. The results of the experiments show that an idea

map can inspire people to generate diverse ideas. The integrated activities that enable

IdeaHound to collect similarity judgments do not deter users from generating ideas and

provide enough information to generate a reliable idea map. I also present a study on the

e�ects of di�erent timings of delivering example ideas on an individual’s idea generation. The

results demonstrate that an intelligent system can provide inspiration at the right moment by

using a computational model that is aware of semantic relationships between ideas. Finally, I

demonstrate how to use an idea map to support sensemaking during the solution synthesis

and present an empirical study of the e�ect of presenting a summary view of ideas on people’s

solution synthesis.

iv



Contents

1 Introduction 1

1.1 Idea Map: Scalable Dynamic Model of Idea Space . . . . . . . . . . . . . . . 5

1.2 IdeaHound: Integrated Crowdsourcing Approach for Creativity Enhancing

Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Timing of Example Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Interpretable Summary Visualization for Solution Synthesis . . . . . . . . . . 9

1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Related Work 12

2.1 Creativity research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Cognitive Models of Creativity . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Timing of Inspiration Delivery . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Creativity Enhancing Interventions . . . . . . . . . . . . . . . . . . . 15

2.2 Automated Data-driven Approaches . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Crowdsourcing and Human Computation . . . . . . . . . . . . . . . . . . . . 19

2.4 Sensemaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Idea Map: Semantic Model of Idea Space 24

3.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Scalable Mechanism for Identifying Diverse Sets of Ideas using an idea map . 28

v



3.3 Ideation Task and Seed Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Idea Map Elicitation and Validation . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Collecting Data to Build the Idea Map . . . . . . . . . . . . . . . . . 32

3.4.2 Validating the Idea Map . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Main Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.3 Design And Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.6 Additional Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 IdeaHound: Integrated-crowdsourcing for Creativity Enhancing Interven-

tions 45

4.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Study 1: Separate Tasks to Collect Semantic Relationships Among Ideas . . 52

4.4 Integrated Crowdsourcing of Creative Ideas and Semantic Relationships . . . 53

4.4.1 Initial Design: Continuous Spatial Arrangement . . . . . . . . . . . . 54

4.4.2 Revised Design: Explicit Clustering . . . . . . . . . . . . . . . . . . . 55

4.4.3 Final Design: Explicit Clustering with Labels . . . . . . . . . . . . . 56

4.4.4 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Evaluation of the Technical Approach . . . . . . . . . . . . . . . . . . . . . . 57

vi



4.5.1 Study 2: User Experience and Creative Output with the Integrated

Crowdsourcing Approach . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.2 Study 3: Evaluating Model Quality Using Data from the Integrated

Crowdsourcing Approach . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 IdeaHound: Creativity Interventions Enabled by Real-time Semantic Modeling

of Generated Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Diverse Inspirational Examples . . . . . . . . . . . . . . . . . . . . . 70

4.6.2 Similar Ideas Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.3 Visualization of the Solution Space . . . . . . . . . . . . . . . . . . . 71

4.7 Study 4: Initial Evaluation of IdeaHound . . . . . . . . . . . . . . . . . . . . 71

4.7.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.8.1 Integrating Idea Generation and Organization Into a Single Activity . 74

4.8.2 Creativity Interventions . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Providing Timely Examples 82

5.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Timing of Example Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Task and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

vii



5.3.4 Dependent Measures And Analysis . . . . . . . . . . . . . . . . . . . 89

5.3.5 Adjustments to the Data . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Providing examples at idle time led to more ideas . . . . . . . . . . . 92

5.4.2 On-demand example requests led to more novel ideas . . . . . . . . . 93

5.5 Follow-Up Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Why and when did participants request examples? . . . . . . . . . . . 94

5.5.2 How did participants use examples? . . . . . . . . . . . . . . . . . . . 95

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Why were on-demand and on-idle e�ects so di�erent? . . . . . . . . . 100

5.6.2 Did examples really help? . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.3 Further insights into the potential harm of examples . . . . . . . . . 103

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Summary View for Solution Synthesis 105

6.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.3 Seed Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.5 Measures and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.6 Adjustments to the data . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.1 No substantial di�erence in the number of valid solutions . . . . . . . 116

6.3.2 No substantial di�erence in the number of hovered and clicked ideas . 116

viii



6.3.3 Participants from both conditions hovered over equal ratio of rare ideas

but the Summary participants clicked open and adopted rare ideas in

higher ratio to their solutions . . . . . . . . . . . . . . . . . . . . . . 117

6.3.4 The Summary participants fixated more on category suggested by the

visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.5 No substantial di�erence in the di�erence between pre-task and post-

task self-e�cacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.6 Perceived helpfulness of the initial positioning of seed ideas . . . . . . 119

6.3.7 No substantial di�erence in perceived task load . . . . . . . . . . . . 119

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4.1 Number of synthesized solutions . . . . . . . . . . . . . . . . . . . . . 119

6.4.2 Discovering rare ideas with a summary view . . . . . . . . . . . . . . 120

6.4.3 Fixating on categories suggested by the summary view . . . . . . . . 121

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusion and Future Directions 123

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2.1 Improve the computational models of ideas . . . . . . . . . . . . . . . 125

7.2.2 Personalized inspirations . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.3 Coordinate a community e�ort . . . . . . . . . . . . . . . . . . . . . 126

7.2.4 Collective ideation for complex problems . . . . . . . . . . . . . . . . 127

7.3 Collective ideation in the real world . . . . . . . . . . . . . . . . . . . . . . . 127

A Birthday Message Ideation Task Instruction 142

B Seed Ideas for Solution Synthesis 143

ix



Citations to Previously Published Work

Significant portions of this dissertation work have appeared in published papers.

Chapter 3 has adapted, updated, and rewritten content from the following paper:

Siangliulue, Pao, Kenneth C. Arnold, Krzysztof Z. Gajos, and Steven P. Dow. “Toward

collaborative ideation at scale: Leveraging ideas from others to generate more creative and

diverse ideas.” In Proceedings of the 18th ACM Conference on Computer Supported Cooper-

ative Work & Social Computing, pp. 937-945. ACM, 2015.

Chapter 4 has adapted, updated and rewritten content from the following paper:

Siangliulue, Pao, Joel Chan, Bernd Huber, Steven P. Dow, and Krzysztof Z. Gajos. “Idea-

Hound: Self-sustainable Idea Generation in Creative Online Communities.” In Proceedings of

the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing

Companion, pp. 98-101. ACM, 2016.

Chapter 5 has adapted, updated, and rewritten content from the following paper:

Siangliulue, Pao, Joel Chan, Krzysztof Z. Gajos, and Steven P. Dow. “Providing timely

examples improves the quantity and quality of generated ideas.” In Proceedings of the 2015

ACM SIGCHI Conference on Creativity and Cognition, pp. 83-92. ACM, 2015.

x



Acknowledgments

I am grateful for the opportunity to deeply pursue my research interest as a PhD student.

I owe this fulfilling graduate school career to many.

First, I want to thank my advisor Krzysztof Gajos for his insights, mentorship, and

support. Krzysztof taught me to articulate my thoughts in a precise manner and pursue

answers through rigorous methods. He encouraged me to pursue hard questions and o�er

advice when I was stuck. His patience and guidance gave me the necessary space to explore

and grow as an independent researcher and a person. It is not an exaggeration to say that I

would not have completed this dissertation without his tutelage.

Steven Dow has been a constant influence throughout my graduate school career and

even before. His expertise and creativity in framing research questions and designing an

experiment contributed tremendously to this dissertation. His feedback usually opened new

directions or questions that I have not thought of before.

Barbara Grosz gave me great feedback while writing this dissertation. She provided me

with prudent advice on framing my research and career during and beyond my graduate

school. I am also grateful for her occasional chocolate donation to our o�ce that kept me

awake while working late at night.

I am fortunate to have a chance to work with incredible collaborators. I thank Joel

Chan for his knowledge on creativity research, clear insights on crucial experimental design

and positive energy he brought to the team. I thank Ken Arnold for his machine learning

insights that formed the concept of an idea map and helpful feedback on following work. I

thank Bernd Huber for his contribution in developing and demoing IdeaHound. I thank my

mentors Holger Winnemoeller, Mira Dontcheva and Sheryl Ehrlich during my internship at

Adobe for their guidance and an opportunity to expand my research interests and experiences.

The conversations with Michael Terry, Andrew Mao, Alice Gao, and Yuval Hart helped

xi



provide me with backgrounds and new thoughts about my research in creativity support

tools. I also thank participants in my studies whose opinions and feedback improved my

understanding of people.

A big thank you to the IIS group members, alumni, visitors and my o�ce-mates for

insightful feedbacks, advices, friendship, fun time and a welcoming space to grow: Ken

Arnold, Bernd Huber, Ofra Amir, Sebastian Gehrmann, Steve Komarov, Anna Huang, Elena

Agapie, Katharina Reinecke, Sunyoung Kim, Na Li, Joseph Williams, Juho Kim, Tuukka

Ruotsalo, Nam Wook Kim, Dimitrios Antos, and Hsiao. Also special thanks to admins

Shannon Cardillo, David Lopez, Jess Jackson for keeping things running smoothly.

Thanks to the Stanford HCI group during my undergraduate years, especially Scott

Klemmer for igniting my interest in the HCI field and graciously providing me with an

opportunity to try my hand at HCI research.

I would also like to thank my friends in both Cambridge and beyond for keeping my

sanity. I thank N’May and Jao for fun conversations and karaoke nights. I am also grateful

for the Harvard Aikikai community for providing me with a healthy way to decompress and

enjoy good company.

Lastly, I want to thank my family: mom, dad and P’Booey. I thank my dad for fond

memories and wise words that still reach me years after he passed. I thank my big sister

P’Booey for her gentle care, support and for being the responsible one. I thank my mom for

her love, encouragement, and cross-continent wake-up calls.

This dissertation work is supported in parts by gifts from Adobe and Google and the

Siebel Scholars award.

xii



Chapter 1

Introduction

Large collective ideation platforms have potential to transform the way our society

innovates. Existing platforms have already attracted a large number of people to contribute

ideas for problems in various domains: OpenIDEO has more than 100,000 innovators who

have submitted thousands of ideas to solve social problems; Quirky, a collaborative invention

platform, has built a community of more than 1,000 inventors who have proposed more than

10,000 product ideas; the City of Cambridge’s Participatory Budgeting asked Cambridge

residents to brainstorm ideas to improve the city resulting in 43 projects—on more than a

million dollar budget—synthesized from 1,408 ideas. With these platforms and communities,

it is possible for anyone to contribute ideas for problems they care about. We can now

leverage this immense number and diversity of experiences and perspectives that lead to

more diverse and creative solutions than ever before possible.

Creativity has di�erent definitions from various traditions of research. In this dissertation, I

am using a sociocultural definition which defines creativity as “the generation of a product that

is judged to be novel and also to be appropriate, useful, or valuable by a suitably knowledgeable

social group” [Sawyer, 2011]. Creative ideas are generally products of combinations between

thoughts and concepts [Finke et al., 1992, Sawyer, 2011]. Large collective ideation platforms

1



(A) OpenIDEO (B) Quirky (C) My Starbucks Ideas

Figure 1.1: Many current platforms—for example, (A) Openideo.com, (B)
quirky.com, and (C) mystarbucksidea.force.com—present ideas in a big list that
can be sorted according to how popular and recent they are. Users have to browse
through a lot ideas to find ones that inspire them.

provide more raw materials in the form of ideas of others that inspire an individual to generate

unexpected ideas and can thus increase the chance of producing creative solutions overall.

However, current platforms and systems lack tools to help people—either contributors

or organizers—make full use of this scale of contribution. Figure 1.1 shows how ideas are

presented in existing platforms. To seek inspirations from ideas of others, users have to wade

through a sea of ideas that can potentially harm their creative output [Jansson and Smith,

1991a, Kohn and Smith, 2011] because a lot of collected ideas are simple, mundane and

repetitive [Bjelland and Wood, 2008]. Further, the large number of redundant and mundane
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ideas hinders solution synthesis after all ideas are collected. Currently, synthesizers (e.g.,

challenge organizers, decision makers, stakeholders, and communities representatives) have to

read through all ideas and evaluate them one by one before synthesizing them into viable

solutions. The synthesis process takes a lot of time and e�ort, which increases with the

number of collected ideas. In some crowd innovation challenges, this process can take up to a

few months [Klein and Garcia, 2015].

Like any other creative process, the creative process of large scale ideation can be divided

into two alternating phases: the divergent phase and the convergent phases [Laseau, 2001,

Buxton, 2007]. During the divergent phase, people aim to generate a lot of creative and

diverse ideas. During the convergent phase, people synthesize the large collection of ideas

into a small number of representative solutions.

Prior research in creative cognition and sensemaking indicates that people perform better

when given guidance while looking for inspirations in the divergent phase and synthesizing

solutions in the convergent phase, compared to when they were left to explore ideas in a

haphazard manner. Specifically, previous work on creative cognition suggests that, during

the divergent phase, people generate more creative and diverse ideas when they are exposed

to creative and diverse examples [Nijstad et al., 2002, Nijstad and Stroebe, 2006, Siangliulue

et al., 2015a]. These insights can inform the design of an intelligent system that reasons

about when and what to present to the users to best inspire them. Also, previous work on

sensemaking suggests that during the convergent phase, people can more quickly develop a

deep understanding of a dataset if they are provided with an initial schema or summary of

the data instead of having to spend a lot of time extracting schema from a lot of ideas [Fisher

et al., 2012, Kittur et al., 2014]. It is thus my thesis that:

In large-scale collective ideation settings, intelligent systems that understand

the emerging solution space of ideas can improve users’ creative output by 1)

recommending sets of inspiring ideas during the divergent phase and 2) providing

3



an interpretable summary of idea space during the convergent phase of ideation.

In this dissertation, I introduce the concept of an idea map, a computational model of an

emerging solution space. An idea map approximates similarities among ideas which could

help a system selects a set of diverse ideas. I describe two scalable approaches for computing

an idea map using crowdsourcing and machine learning techniques. The first approach

generates an idea map from human responses to micro-task questions about relationships

among ideas. The second approach derives an idea map from users’ natural activities during

idea generation without needing additional human inputs. I will refer to the second approach

as “integrated crowdsourcing”. I present studies that evaluate the reliability of idea maps

generated by these two approaches. The results show that idea maps generated by both

approaches agree with human judgments of similarity between pairs of ideas; an idea map

derived from users’ natural activities agreed more with human judgments than an idea map

generated from micro-task responses. My results also show that presenting people with a

diverse set of ideas sampled from an idea map inspires diverse ideas. I demonstrate ways an

idea map can enable deliberate exploration of a solution space with IdeaHound, a system

that derives an idea map from the users’ collective natural activities of organizing ideas on

a virtual whiteboard during idea generation. I also present a study of the e�ects of timing

of example delivery on people’s creative output to determine when to provide people with

ideas. Finally, I describe a study of the e�ect of seeing a summary view of ideas on people’s

solution synthesis. The results of this study demonstrates that a summary view that groups

similar ideas helps people spot rare ideas but can fixate people on the single point of view

the summary suggests.

The following sections summarize the contributions of this dissertation.
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1.1 Idea Map: Scalable Dynamic Model of Idea Space

Ideas submitted by other people can serve as an important resource for creative production

but they have to be used with care. Seeing inspiring ideas can help improve creative output

[Herring et al., 2009, Marsh et al., 1996], while seeing uninspiring ideas can cause fixation

on those ideas [Chrysikou and Weisberg, 2005, Jansson and Smith, 1991b]. Many factors

determine whether an idea is inspiring for an individual. Research has considered such factors

as semantic relevance [Chan et al., 2014, 2011, Dahl and Moreau, 2002], novelty [Chan et al.,

2011, Agogué et al., 2013], and diversity [Doboli et al., 2014, Zeng et al., 2011, Baruah

and Paulus, 2011, Siangliulue et al., 2015a] of example ideas. Prior research suggests that

presenting users with inspirational examples that are both creative and diverse increases the

creativity and diversity of generated ideas [Marsh et al., 1996, Paulus and Dzindolet, 1993,

Nijstad et al., 2002, Leggett Dugosh and Paulus, 2005]. While a few scalable approaches

to selecting creative ideas exist [Xu and Bailey, 2012, Klein and Garcia, 2015], methods for

selecting diverse sets of ideas are less well-developed.

To select inspiring ideas from a large collection in real-time as new ideas come in, the

systems need an approach that is both scalable (to handle a large number of ideas) and

dynamic (to integrate new ideas as examples almost instantly instead of waiting for batch

processing). Fully automated methods that satisfy both requirements currently fall short

when processing ideas that are less structured and expressed in the form of short text snippets

or sketches [Chang et al., 2009, Talton et al., 2009, Lee et al., 2010, Gerber et al., 2012].

Popular automated text processing approaches such as Latent Dirichlet allocation (LDA) do

not always infer semantically meaningful topics [Chang et al., 2009, Blei, 2012]. Approaches

that incorporate human inputs are more flexible and capture non-superficial similarity [Chang

et al., 2009, André et al., 2014]. However, prior human-computation approaches either require

a lot of human input to account for similarities between all pairs of ideas or process ideas in
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batches rather than incrementally.

In Chapter 3, I present a scalable crowd-powered approach for selecting a set of diverse

ideas. This approach, adapted from an existing machine-learning method [Tamuz et al., 2011],

uses similarity comparisons. It asks non-experts “is idea A more similar to B or C?” and uses

their responses to generate a computational model called an idea map (Figure 3.1). An idea

map encodes similarities between ideas. It is an approximation of a full pairwise distance

matrix. An idea map requires as few as O(n) distance comparisons as input (compared to

O(n2) needed to compute the full distance matrix) and infers the rest by embedding ideas in

a two-dimensional space that is most consistent with the similarity comparisons people made.

On the idea map, similar ideas are placed close to each other and dissimilar ideas are placed

far from each other. An ideation system can algorithmically select a set of diverse ideas by

sampling ideas from di�erent parts of the idea map.

The evaluation of a generated idea map reveals that the idea map reflects people’s

judgments of conceptual relationships among ideas. Human raters agree with the estimates

of similarity of derived from the idea map as much or more than they agree with each other.

Further, presenting a diverse set of ideas sampled from an idea map prompts people to

generate more diverse ideas than when they see a randomly sample set of ideas.

1.2 IdeaHound: Integrated Crowdsourcing Approach

for Creativity Enhancing Interventions

An idea map can enable creative interventions that boost creativity, such as providing

diverse inspirational examples. However, generating an idea map from micro-task responses

requires extra human e�ort. Even people who might be intrinsically motivated to generate

ideas are unlikely to put e�ort toward completing the micro-tasks. These micro-taskes are

usually outsourced to external workers who complete a large number of them. However,
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outsourcing such tedious tasks is not always a viable solution. Furthermore, some types of

ideas, such as scientific work, require expertise to process and evaluate. Untrained crowd

workers are thus not qualified to evaluate the ideas and outsourcing such micro-tasks to

skilled workers is expensive or impossible.

Chapter 4 introduces a general approach called “integrated crowdsourcing” that seamlessly

integrates a potentially tedious secondary task with a more intrinsically-motivated primary

task. I demonstrate the application of this approach with IdeaHound, an ideation system

that integrates the task of extracting similarities among ideas into the primary task of idea

generation. The system uses the generated idea map to support three creative interventions:

providing diverse inspirational examples, providing ideas similar to a given idea and providing

a summary of the solution space.

IdeaHound provides users with a virtual whiteboard that they can use to organize ideas

into groups, an activity that users naturally do when they are making sense of the solution

space while generating ideas. The system infers similarity between ideas based on how

users group them. IdeaHound combines the results of these implicit human actions with

machine learning techniques to create an idea map. The integrated nature of the similarity

extraction task allows IdeaHound to leverage the expertise and e�orts of users who are

already motivated to contribute to idea generation, overcoming the scalability limitations of

existing approaches.

The evaluation of IdeaHound shows that the integrated task does not detract users from

the main task of generating ideas and that the derived computational model is more accurate

than a comparable model generated by an outsourced micro-task approach. Specifically,

participants were equally willing to use IdeaHound compared to a conventional platform

that did not require organizing ideas. These results show a successful application of inte-

grated crowdsourcing on ideation platforms and promise further application of integrated

crowdsourcing in other domains.
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1.3 Timing of Example Delivery

Prior work has suggested the timing of delivery of examples can impact creative out-

come [Kulkarni et al., 2014] but much less is known about when to present examples to people.

Existing cognitive theories of creative insights suggest that people are likely to benefit most

from examples when they run out of ideas [Seifert et al., 1995, Patalano and Seifert, 1994,

Moss et al., 2007]. In Chapter 5, I present a study that explored two mechanisms that deliver

examples when users are likely to be stuck: 1) a system that proactively provides examples

when a user appears to have run out of ideas, and 2) a system that provides examples when

a user explicitly requests them. The study compared these two mechanisms against two

baselines: providing no examples and automatically showing examples at a regular interval.

The results show that participants who requested the examples themselves generated

ideas that were rated the most novel by external evaluators; participants who received

examples automatically when they appeared to run out of ideas produced the most ideas.

Importantly, participants who received examples at a regular interval generated fewer ideas

than participants who received no examples, suggesting that mere access to examples is not

su�cient for creative inspiration.

These results help inform when to present inspiring ideas to users during ideation. The

system should deliver examples when people are ready to make use of them, such as when

they run out of ideas and are looking for a new direction to pursue. These results were further

corroborated and extended by a recent study to which I contributed. That study demonstrated

that receiving ideas that are di�erent from people’s recent ideas during productive ideation

slows their ideation, reduce deep exploration of a topic and increase the chance of hitting an

impasse [Chan et al., 2017].
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1.4 Interpretable Summary Visualization for Solution

Synthesis

The collective ideation process does not end at idea collection. Once the ideas are collected,

synthesizers—usually the people who organize an ideation challenge or representatives of

a community—have to synthesize them into a few di�erent novel and practical solutions.

This process involves manually looking through all ideas, comparing ideas against each other,

evaluating ideas, and synthesizing solutions from multiple ideas. The process is laborious and

time-consuming and may take months to complete [Klein and Garcia, 2015]. Furthermore,

prior work in cognitive science [Nijstad and Stroebe, 2006, Finke et al., 1992] indicates that

repeated exposure to the same ideas can fixate people to those particular ideas. The fixation

e�ect could bias the synthesizers towards common ideas that cover the majority of the solution

space.

Prior sensemaking research has shown that people can more quickly reach a deep under-

standing of a dataset if they are given an initial schema or “knowledge map” of the data [Fisher

et al., 2012, Kittur et al., 2014]. An idea map already has information about conceptual

similarities between ideas and thus can be used to generate a summary visualization of the

emerging knowledge map of ideas since similar ideas are grouped together. This visualization

shows each group of ideas in its own distinct cluster, regardless of the number of ideas in

the group. A group with fewer ideas is thus as salient as a group with more ideas. I thus

hypothesize that, with this summary view, users can also easily find rare ideas by looking at

ideas that stand on their own or are in a small group.

However, reasoning over summaries of the solution space presents a potential trade-

o� between e�ciency and e�ectiveness. For example, providing people with a summary

visualization might speed up their solution synthesis process at the cost of getting fixated on

the suggested schema. Ideas are multifaceted and a solution space can have multiple schemas.
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Presenting just one schema to the users might prevent them from taking other schemas into

account when they synthesize solutions. For instance, a synthesizer for a logo design might

overlook schemas such as fonts and shapes of a logo when they see a summary view that

groups logos by color scheme. Chapter 6 presents a study of this trade-o�. The results show

that the users with a summary view process more rare ideas and integrate more rare ideas

into solutions than those without a summary view. However, users with a summary view also

get more fixated on the schema suggested by the summary view. I discuss some approaches

to mitigating the fixation on a particular schema while retaining the benefits of the summary

view.

1.5 Overview

Chapter 2 describes major research challenges and related work.

The main part of the dissertation presents a study that informs e�ective example delivery

mechanisms, a computational model that maps the solution space of a large collection of

ideas, the evaluation of the model and two approaches to extract them, and two systems that

apply the model to real creative task in collective ideation settings.

• Chapter 3 introduces a scalable crowdsourced approach that uses machine learning

to generate a computational model, an idea map, of emerging ideas from micro-task

inputs.

• Chapter 4 presents IdeaHound a system that derives an idea map from users’ activities

during idea generation. The system uses the generated idea map to support various

creative interventions during ideation.

• Chapter 5 presents a study on the e�ects of timing of example delivery mechanisms

on an individual’s idea generation. The results inform design decisions on timing of

example delivery for future systems.
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• Chapter 6 describes a study on the e�ects of providing people with an interpretable

summary view that shows ideas semantically grouped together on their solution synthe-

sis.
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Chapter 2

Related Work

This dissertation work is built upon work from various research areas: creativity re-

search to provide insights on creativity enhancing interventions, automated data-driven

approaches to inform the state-of-art of automatically uncovering a solution space of a large

collection of ideas, crowdsourcing and human computation to e�ciently harvest human

perception of ideas where automated methods come short, and sensemaking to support the

users’ activities during the synthesis phase. In this chapter, I review related work in each

area and situate it in the context of my research on collective ideation.

2.1 Creativity research

As noted in previous chapter, large-scale ideation systems typically do not live up to their

promise in practice: they tend to collect large numbers of redundant and shallow ideas of

variable quality [Bjelland and Wood, 2008, Klein and Garcia, 2015, Riedl et al., 2010]. The

emerging literature on creative cognition and creativity support tools has identified a number

of creativity-enhancing interventions that can significantly improve the performance of large-

scale ideation systems by improving individual creativity and/or enhancing collaboration
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capabilities.

2.1.1 Cognitive Models of Creativity

Cognitive models of creativity have suggested that example ideas can have both positive

e�ects and negative e�ects. For example, the model known as Search for Ideas in Associative

Memory (SIAM) describes idea generation as a two-stage process: knowledge activation and

idea production [Nijstad et al., 2002, Nijstad and Stroebe, 2006]. SIAM assumes two memory

systems: long-term memory (permanent with unlimited capacity) and working memory

(transient with limited capacity). Long term memory is partitioned into images, which are

knowledge structures composed of a core concept and its features. For example, an image

can have a core concept “hotel” with features like “has rooms”, “has a swimming pool”, and

“is cheap”. When generating ideas, people run a repeated two-stage search process. First,

images from long term memory are retrieved and temporarily stored in working memory

(knowledge activation). Then, in the second stage, the features of the image are used to

generate ideas by combining knowledge, forming new associations, or applying them to a new

domain (idea production). Retrieval of images probabilistically depends on search cues (e.g.,

features that are active in working memory, previously generated ideas, one’s understanding

of the problem). An image that is already in working memory is likely to be sampled again.

SIAM, therefore, implies that seeing example ideas generally helps activate new images that

would not have been accessible otherwise and thus leads to production of novel ideas. On

the flip side, if the stimulus examples are homogenous, the generated ideas are likely to be

homogenous, an exploration of semantically similar ideas in depth.

Similar to SIAM, the Geneplore model [Finke et al., 1992] also views examples as an

activator of preinventive forms, a raw material for ideas in the exploration phase. If the set

of stimulus examples is diverse, the generated ideas are likely to be diverse. This prediction

from both models is supported by empirical evidence: people generated more diverse ideas
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when exposed to ideas from a wide range of semantic categories [Nijstad et al., 2002].

2.1.2 Timing of Inspiration Delivery

SIAM and the subsequent empirical results also indicate that example ideas can have

both positive e�ects (cognitive stimulation) and negative e�ects (cognitive interference) based

on when an example is shown [Nijstad et al., 2002, Nijstad and Stroebe, 2006]. On the

one hand, seeing example ideas generally leads to production of novel ideas. On the other

hand, ill-timed examples can prematurely terminate a person’s train of thought, interrupt

their thinking, and cause a loss of potentially creative ideas that usually come later in the

session [Nijstad et al., 2002, Parnes, 1961, Bailey et al., 2000, Bailey and Iqbal, 2008].

Kulkarni et al. [Kulkarni et al., 2014] examined how the timing of examples a�ect creative

output and concluded that early or repeated—rather than late—exposure to examples

improves the creativity of generated ideas. However, Kulkarni et al. delivered examples at

fixed regular intervals. This may not be optimal: intuitively, one might expect that people

can be more or less “prepared” to benefit from examples at di�erent points during the ideation

process.

Beyond SIAM, several other theories of example use in problem solving and creative idea

generation ground the intuition that people benefit more from examples when they are primed

and ready. In education, the Preparation for Future Learning perspective [Schwartz and

Martin, 2004, Schwartz et al., 2011] posits that learners get more out of learning resources

(e.g., worked examples, lectures) if they first struggle with the concepts before being exposed

to those resources. Relatedly, Kapur and colleagues have shown the value of “productive

failure,” a two-phase instructional strategy where students first engage in generation activities

(e.g., attempting to solve problems that require knowledge of the target concepts) and then

engage in consolidation/instruction, where they are exposed to the target concepts in various

ways [Kapur, 2008]. These theories of learning argue that prior problem solving can prepare
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learners to let go of old knowledge, and prime them to notice important features of target

concepts (e.g., what problem they are trying to solve).

The Prepared Mind theory of insight o�ers additional insights into the optimal timing

of example idea presentation. It posits that people can be more or less “prepared” to

assimilate problem-relevant stimuli from the environment depending on their cognitive

state [Seifert et al., 1995, Patalano and Seifert, 1994]. The theory predicts specifically that,

when problem solving reaches an impasse, people maintain an open goal in memory to solve

the problem, and are more motivated and better able to map problem-relevant stimuli that

might have been previously ignored (e.g., because it was too semantically distant or di�cult

to understand/transfer). Indeed, Tseng, et al. [Tseng et al., 2008] showed that people benefit

more from analogically distant examples (a type of example hypothesized to be beneficial

for creative inspiration [Dahl and Moreau, 2002]) during a break from problem solving after

working on the problem for a significant amount of time compared to seeing the examples

before working on the problem. Similarly, Moss, et al. [Moss et al., 2007] showed that people

benefited more from hints after leaving a problem in an unsolved state compared to seeing

the hints before working on the problem.

The shared intuition behind all of these theories is that optimal timing of example use

for creative inspiration should strike a balance between allowing the ideator to queue up

their own knowledge and constraints and avoiding cognitive fixation on a certain part of

solution space. This intuition signals that delivering examples when people run out of ideas

could maximize the inspirational benefit of examples. At that point, the examples can act as

external stimuli to activate new knowledge in memory to combine into new ideas.

2.1.3 Creativity Enhancing Interventions

Seeing other people’s ideas may have unintended side e�ects. Specifically, people tend to

generate ideas that borrow concepts from presented examples [Jansson and Smith, 1991a,
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Smith et al., 1993, Marsh et al., 1996, Kohn and Smith, 2011]. If the examples were mundane

or represented only a narrow slice of the solution space, seeing them may actually constrain

rather than stimulate idea generation. This phenomenon has been referred to as design

fixation.

While exposure to mundane examples may hinder creativity [Kohn and Smith, 2011,

Jansson and Smith, 1991a], individuals can come up with more diverse and/or creative ideas if

they have access to diverse and high quality inspirational examples [Chan et al., 2011, Nijstad

et al., 2002, Marsh et al., 1996, Sio et al., 2015]. Empirical work suggests that exposing people

to novel ideas, as opposed to common ones, can result in more novel ideas [Marsh et al.,

1996]. Teams where members can see ideas of others generate more ideas (and sometimes of

higher quality) compared to teams where each member generates ideas alone without seeing

ideas of others [Gallupe et al., 1991, 1992, Dennis and Valacich, 1993]. Exposure to others’

ideas also accelerates the generation of ideas across di�erent semantic categories, increasing

productivity overall [Nijstad et al., 2002]. This result might be attributable to the conforming

e�ect: influenced by the novel examples, people incorporate the novel elements into their own

ideas. An example with unfamiliar semantic properties prompt people to investigate ideas

with those properties. Meanwhile, they might incorporate the ideas of their own with the

examples, producing ideas in a new category that has not been explored by prior contributors.

SIAM and the Geneplore model also suggests that people benefit from exposure to diverse

sets of examples [Finke et al., 1992, Nijstad et al., 2002, Nijstad and Stroebe, 2006].

Another mechanism at play may be social influence. Results from a study of social

influence processes in group brainstorming suggested that people are a�ected by information

about the performance of others [Paulus and Dzindolet, 1993, Leggett Dugosh and Paulus,

2005]. One can infer the overall performance of others from ideas that one sees and try

to match with ideas of the same caliber. Thus, exposing people to high quality, creative

examples generated by peers can raise their aspirations while showing them less creative
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examples would likely lower the quality of subsequent ideas.

The net e�ect of increasing individual creativity is that the group can converge on

novel, high quality solutions more quickly than if all participants simply saw their own

ideas [Boudreau and Lakhani, 2015]. Inspirational examples can be drawn from peers’ ideas

for the same problem [Nijstad et al., 2002], or from external sources [Chan et al., 2011,

Huang et al., 2016, Lee et al., 2010]. It is important that example sets be relatively small,

because participants have limited time and cognitive resources [Javadi, 2012, Majchrzak and

Malhotra, 2013]. If people have to process large numbers of examples, they can resort to

e�ort-saving but suboptimal strategies, such as merely referring to (instead of deeply building

on) other ideas [Javadi, 2012]. Further, the content of the ideas people see also matters.

Prior research has found that examples are most inspirational if they are diverse [Huang

et al., 2016] and/or appropriate to their current context [Huang et al., 2016]. Examples can

also increase creativity by supporting exploration of iterations and variations on a solution

approach [Sio et al., 2015, Chan and Schunn, 2015, Lee et al., 2010], which can lead to

not just higher quality [Dow et al., 2010], but also more novel ideas [Nijstad et al., 2010a,

Rietzschel et al., 2007b]. In contrast, poorly chosen examples can even harm ideation, by

inducing distraction [Nijstad et al., 2002] or fixation [Kohn and Smith, 2011, Jansson and

Smith, 1991a].

These insights point to two interventions that a collective ideation system might employ:

show examples of particularly good ideas generated by others, and show a diverse sets of

examples. In line with prior work, I hypothesize that both of these interventions will increase

both the creativity and the diversity of ideas generated.

Individuals and groups can also achieve better creative outcomes if they have access to a

“map” of the solution space that shows the kinds of solutions that have been explored by the

group so far and/or in prior/external e�orts to solve the problem, and how they relate to

each other semantically. The map’s higher-level view of the solution space can enable deeper
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insights into the solution space [Marks et al., 1997, Talton et al., 2009, Gerber et al., 2012],

and the abstract solution “schemas” that might describe clusters of related ideas [Yu et al.,

2014b]). These deeper insights have been shown to facilitate more e�ective recombination of

ideas than with raw example ideas [Luo and Toubia, 2015, Yu et al., 2014b]. These maps

can also improve iteration on ideas by enabling people to discover and explore many closely

related solution alternatives [Lee et al., 2010, Chaudhuri et al., 2013, O’Donovan et al., 2014,

Huang et al., 2014].

At the group level, maps have also been shown to help the group keep track of their

exploration of the solution space [Nickerson et al., 2008, Nickerson and Yu, 2012]. The map

can give participants an overall sense of what ideas have already been conceived, what “gaps”

might exist, and where to focus their e�orts. Participants can then make the best use of their

limited time to make contributions that are most valuable to the group, avoiding redundant

e�ort. This coordination benefit is supported by simulation studies [Wisdom and Goldstone,

2011, Vuculescu and Bergenholtz, 2014], as well as an empirical study of collaborative ideation

on programming problems [Boudreau and Lakhani, 2015]. These maps greatly reduce the

costs of manual coordination across collaborators, which can be extremely high in large-scale

collaboration systems [Kittur et al., 2009]. However, these benefits have heretofore largely

been realized in systems that engaged a small number of dedicated leaders to manually

construct such maps.

The common thread behind these interventions is that they depend on having access to

both a large corpus of solutions (whether generated externally or by peers in the same group)

and a semantic model that specifies the structure of the solution space (e.g., how solutions

relate to each other).
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2.2 Automated Data-driven Approaches

Some automated mechanisms that extract information about the emerging solution space

from a collection of ideas exist for domains where ideation artifacts are created with well-

defined structures, such as webpages or geometric shapes in 3D modeling [Lee et al., 2010,

Gerber et al., 2012, Marks et al., 1997, Talton et al., 2009]. The mechanisms rely on the

structured nature of the artifacts and cannot generalize to nascent ideas most commonly

found in the form of unstructured short text snippets or sketches. Fully automated topic

analysis approaches exist for analyzing large collections of unstructured text [Blei, 2012].

However, these approaches often miss key nuances in the data [Chang et al., 2009, Chuang

et al., 2012], and struggle with short text snippets. They also cannot handle unstructured

sketches without some initial segmentation of sketches into reasonable “units” (analogous to

words in topic modeling of texts).

2.3 Crowdsourcing and Human Computation

Information about ideas collected from people suits the nature of unstructured ideas better

than information derived from automated methods. However, acquiring such information

is expensive compared to automated methods. The challenge is therefore to collect human

inputs accurately and e�ciently.

Prior work has already produced a number of scalable mechanisms for evaluating the

quality of individual ideas. Some of them are already used in existing online idea generation

platforms. For example, Quirky.com and OpenIDEO.com have used simple binary voting

mechanisms to identify promising ideas. AllOurIdeas.org finds top ideas by deriving ranks of

ideas from users’ ranking of pairs of ideas [Salganik and Levy, 2012]. In other works where

more refined measures are needed, users rate creativity of ideas on di�erent Likert scales [Yu

and Nickerson, 2011, Tanaka et al., 2011]. Xu and Bailey demonstrated a mechanism that
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helps ensure that voting results from non-experts match those of experts by aggregating

non-experts’ ratings of subset of ideas [Xu and Bailey, 2012]. Scalably assessing semantic

relationships among ideas, however, has not been as well studied.

Two approaches to quantifying semantic relationship are common in prior work: labeling

items with semantic categories, or evaluating subjective similarity between items independent

of semantic categories.

Semantic Categories Label

Manually created semantic categories have been used in prior research in creativity, either

as ways to select a diverse set of ideas [Nijstad et al., 2002], or as a way to evaluate the

diversity of creative artifacts [Goldenberg et al., 2013, Jansson and Smith, 1991a].

E�cient crowd-based mechanisms exist to label large collections of items with semantic

categories or tags. Some take the approach of generating labels or tags for each individual

item [Law and Von Ahn, 2009], while others produce hierarchical taxonomies capturing the

semantic structure of the concepts represented in the item set [Chilton et al., 2013, 2014,

André et al., 2014]. Di�erences in contributors’ mental models have been a persistent di�culty

in semantic categorization even for experts [Chilton et al., 2013]. A complete system for

organizing ideas should include elements of both discrete semantic categories and continuous

quantitative similarity.

Idea Similarity

An alternative approach to quantifying diversity is quantifying how items are related,

such as evaluating the diversity of creative artifacts by collecting similarity judgements on a

numerical scale between pairs of ideas [Dow et al., 2010]. However this approach requires on

the order of the square of the number of ideas, making it less feasible for large idea collections.

Moreover, accurate measures require that ratings be calibrated. Alternative approaches
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consider pairwise rankings, which ask evaluators to choose one pair of items over the other

and thus do not require calibration.

Machine learning techniques can help scale human judgments by inferring a latent structure

for the items, such as clusters [Heikinheimo and Ukkonen, 2013, Gomes et al., 2011] or a

Euclidean space [Tamuz et al., 2011, van der Maaten and Weinberger, 2012]. Like the semantic

categorization approaches, these approaches seek a compact representation of items rather

than explicitly encoding all relationships, but the latent structure has no intrinsic semantics.

A promising alternative leverages human computation, whether exclusively or in a hybrid

system with machine intelligence [André et al., 2014, Chilton et al., 2014]. Human computation

approaches have been successfully applied to organize artifacts in various domains such as 3D

modeling [Talton et al., 2009, Chaudhuri et al., 2013], graphic designs [O’Donovan et al., 2015,

2014] and music composition [Huang et al., 2014]. These approaches all require considerable

number of inputs from humans to discover the design space of ideas; some of these inputs are

extracted from users’ interactions with the system [Talton et al., 2009, Huang et al., 2014],

but most of these inputs are from small, explicit human computation tasks, such as clustering

subsets of items [André et al., 2014, Chilton et al., 2014], completing similarity comparisons

between items [Tamuz et al., 2011], or identifying attributes of items [Chaudhuri et al., 2013,

O’Donovan et al., 2015, 2014].

One key disadvantage of human computation micro tasks is that they tend to be uninter-

esting and repetitive. The specific activities (tagging, judgements of relative similarity) take

time, do not directly contribute to the ideation process, and are often perceived as tedious.

Contributors to the online platforms generally avoid doing tedious maintenance tasks (in this

case providing information about ideas) to do more interesting tasks (generating ideas) [Kraut

et al., 2012]. One could argue that these activities could be performed by external crowds

hired specifically for the purpose. However, even if cost was not an issue, this approach

can be challenging for those creative tasks where specialized domain knowledge is required.
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Further, outsourcing is typically done in batches, but some of the key creativity-enhancing in-

terventions of collaborative ideation systems (e.g., coordination via a solution space overview)

require (near) real-time continuous updates to the model. My research seeks to increase the

feasibility of human computation approaches by exploring ways to integrate the semantic

organization tasks into participants’ primary activities.

2.4 Sensemaking

Currently, synthesizing solutions from a collection of ideas involves processing idea one by

one manually to understand the emerging solution space [Schulze et al., 2012]. With a lot of

mundane and repetitive ideas, synthesizing solutions becomes tiresome [Klein and Garcia,

2015, Bjelland and Wood, 2008]. Existing methods propose scalable ways to filter ideas based

on quality but did not provide a way to help people make senses of the solution space.

Sensemaking is an iterative process of searching for a representation and encoding in-

formation to achieve a certain goal [Russell et al., 1993]. Prior work has explored di�erent

approach in supporting making sense of a large amount of information. Sensemaker pro-

vides users with interfaces that help them explore data from heterogeneous sources and

develop mental model based on the information context [Baldonado and Winograd, 1997].

Grokker2 helps users make sense of large document collections by presenting document in

groups based an automated clustering algorithms [Russell et al., 2006]. Terveen et al. [1999]

presents users with a summary visualization that groups similar websites together. Relying

on similar network data sructure, Apolo provides users an interactive summary view that

shows similar items grouped together based on the users’ evolving mental model [Chau et al.,

2011]. Alternatively, some prior work explores a summary view based on attributes of the

information [Kittur et al., 2014, Russell et al., 1993].

Prior work on idea generation also explores di�erent summary views to make sense of
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a collection of ideas. Idea Spotter shows a summary of individual ideas marked by other

users[Convertino et al., 2013]. IdeaGens shows a word cloud visualization of submitted ideas

to summarize evolving solution space to support facilitating synchronize ideation [Chan et al.,

2016]. Both systems are limited to ideas in the form of text and did not support sensemaking

by grouping similar ideas together. Prior work also explores di�erent ways to synthesize

insights for a design team and proposes showing summary views with similar ideas placed

together [Gumienny et al., 2014].
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Chapter 3

Idea Map: Semantic Model of Idea

Space

This chapter has adapted, updated, and rewritten content from a paper at CSCW

2015 [Siangliulue et al., 2015b]. All uses of “we”, “our”, and “us” in this chapter refer to

coauthors of the aforementioned paper.

A growing number of large collaborative idea generation platforms promise that by

generating ideas together, people can create better ideas than any would have alone. But

how might these platforms best leverage the number and diversity of contributors to help

each contributor generate even better ideas?

Prior research suggests that seeing particularly creative or diverse ideas from others can

inspire you, but few scalable mechanisms exist to assess diversity. This chapter introduces

a new scalable crowd-powered method for evaluating the diversity of sets of ideas. The

method relies on similarity comparisons (is idea A more similar to B or C?) generated by

non-experts to create an abstract spatial idea map. Our validation study reveals that human

raters agree with the estimates of dissimilarity derived from our idea map as much or more

than they agree with each other. People seeing the diverse sets of examples from our idea
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map generate more diverse ideas than those seeing randomly selected examples. Our results

also corroborate findings from prior research showing that people presented with creative

examples generated more creative ideas than those who saw a set of random examples. We

see this work as a step toward building more e�ective online systems for supporting large

scale collective ideation.

3.1 Motivation and Contributions

The “lone inventor” is a myth: even geniuses benefit from exposure to ideas of others [Singh

and Fleming, 2010]. Seeing ideas di�erent from their own broadens people’s perspectives,

sheds light on obscure connections, and inspires people to come up with ideas they might not

have thought of alone [Herring et al., 2009, Lee et al., 2010, Dow et al., 2011]. By generating

ideas together, people can produce more diverse ideas than if each person generate ideas

alone, and this diversity can lead to more creative overall solutions [Nagasundaram and

Dennis, 1993, Paulus et al., 2011].

Various online platforms have emerged as spaces where people can share their ideas and

get inspired by other people’s ideas. For example, AllOurIdeas.org hosts more than 200,000

ideas addressing 4,500 problems, Quirky.com receives hundreds of new product ideas every

day from its 500,000 inventors, and OpenIDEO.com hosts an archive of more than 1,000 ideas

to solve 24 pertinent societal problems. Contributors to these platforms can browse other

people’s ideas in search of inspiration. The mix of perspectives and expertise among the

participants allows creative solutions to emerge in a way unimaginable in the lone-innovator

or small-group settings.

But the large-scale idea generation paradigm also introduces a new challenge: how to

find the most inspiring ideas in a sea of hundreds? Existing approaches are to either help

people parametrically browse and search for examples [Lee et al., 2010, Kumar et al., 2013] or
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extract schemas from examples and search for the schema that allows analogical transfer for a

new idea [Yu et al., 2014a,b]. Even with such strategies, the users still have to wade through

many examples to either find an inspiring idea or to find the right set of ideas to allow schema

induction. They may get overwhelmed by a large number of mundane or redundant ideas

before they encounter ideas that genuinely inspire them.

Alternatively, a system can select appropriate sets of inspiring examples for its users. The

challenges of algorithmically identifying inspiring ideas from a large pool of ideas are twofold.

Firstly, picking out a set of inspiring ideas calls for finesse. People are easily influenced by

ideas they encounter [Jansson and Smith, 1991a, Smith et al., 1993, Marsh et al., 1996, Kohn

and Smith, 2011]. A set of uninspiring examples may fixate contributors on ordinary or a

relatively narrow set of ideas. In contrast, a set of unique examples might prompt people

to explore semantically di�erent paths from their original ones, potentially yielding ideas

from unexplored parts of the solution space. Our literature review reveals two criteria for an

inspiring set of example ideas: creativity of individual examples and diversity of the set of

examples. Compared to seeing a random selection of examples (as one might see when simply

browsing ideas), seeing particularly creative (i.e., novel and valuable) ideation examples has

been shown to improve both the creativity and diversity of ideas one generates [Marsh et al.,

1996, Paulus and Dzindolet, 1993, Leggett Dugosh and Paulus, 2005]. Similarly, if the set of

examples is diverse (i.e., if the ideas within the set were substantially di�erent from each

other), the diversity of generated ideas should also increase [Nijstad et al., 2002]. An e�ective

ideation system should be able to assess the creativity of ideas and diversity of sets of ideas

to be able to present inspiring ideas to promote creativity.

Secondly, there is a question of scalability. Even a human expert might struggle to find a

set of creative and diverse ideas from a large idea archive in a reasonable amount of time. Our

approach needs to e�ectively identify a promising set of inspiration from a pool of thousands

of ideas.
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Scalable crowd-powered mechanisms for assessing creativity of individual ideas have

already been developed [Salganik and Levy, 2012, Tanaka et al., 2011, Xu and Bailey, 2012,

Yu and Nickerson, 2011, Yu et al., 2014b,a]. However, automated or crowd-powered methods

for assessing semantic diversity of sets of ideas are less well developed. To enable selection of

diverse sets, we built on prior work on multidimensional scaling and active similarity learning

techniques [Tamuz et al., 2011, van der Maaten and Weinberger, 2012] to develop a technique

that “embeds” all ideas in a two-dimensional space, creating an abstract spatial map from

as few human queries as possible. As input, our technique takes triplet comparisons (“Is

idea A more similar to B or to C?”), which non-experts can provide easily and reliably. The

distance between a pair of ideas on the generated map reflects the collective perception of the

semantic di�erence between these ideas. This map allows us to estimate the relative diversity

of subsets of ideas: sets where all ideas are close to each other on the map will be perceived

as less diverse than sets where ideas are far apart.

We conducted a study to test whether the e�ects of creativity and diversity of examples

on generated ideas still hold when we sampled examples using our scalable mechanisms. We

presented participants with sets of example ideas that varied in creativity (as measured by

a conventional method) and diversity (as measured by our idea map metric). Our results

demonstrated that more creative examples led to more creative ideas being generated and

that more diverse sets of examples led to more diverse sets of ideas being generated. However,

we did not observe any impact of creative examples on the diversity of generated ideas or

diversity of examples on the average creativity of generated ideas.

The work in this chapter made the following contributions:

• A crowd-powered method for automatically constructing an “idea map” that can be

used to extract diverse sets of examples at scale.

• Validation of the generated “idea map’
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• A study demonstrating that participants generated more diverse ideas when seeing

diverse sets of examples generated using our idea map approach than when seeing

randomly selected examples. The study also corroborated results from prior research

by showing that people presented with particularly creative examples generated more

creative ideas than those who saw set of random examples.

Together, these results can inform the design of systems to support large-scale collective

ideation. Instead of leaving people to explore ideas of others haphazardly, future systems

can help contributors to quickly find manageable sets of particularly creative and diverse

ideas. Some existing systems already include mechanisms (such as voting mechanism used by

OpenIDEO.com) for finding particularly creative ideas. We extend the state of the art by

contributing a scalable crowd-powered approach that enables selection of sets of diverse ideas.

3.2 Scalable Mechanism for Identifying Diverse Sets of

Ideas using an idea map

We need a way to construct sets of diverse ideas, and ideally also to systematically

compare the relative diversity of pairs of sets. We only consider methods that incorporate

human input, because fully automated methods currently tend to capture only superficial

similarity [André et al., 2014]. Because we intend to use this measure in systems that support

collaborative ideation in large groups, it also must scale to a large pool of ideas. We seek

approaches that can be sustained by a large number of small contributions from non-experts.

Moreover, it should be robust to between-rater di�erences in mental models and judgment

calibration.

We chose to adapt an existing machine-learning–based method [Tamuz et al., 2011] that

uses triplet similarity comparisons to place ideas in a two-dimensional map. The map is
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messages 
about turning!
a half century

generic common!
birthday 
messages

messages with 
candle concept

messages about setting 
something on fire

generic birthday 
messages that 
express gratitude

A unique idea  on 
relationship between  

dalmatian and 
firefighting occupation

Figure 3.1: An idea map generated by our system, showing emergent clusters of
ideas around di�erent themes and sentiments.
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constructed such that ideas perceived by people to be similar to each other are placed close

together, while ideas perceived to be very di�erent are placed far apart. Figure 3.1 shows an

example of such an idea map generated with our system.

To generate an idea map, we first present groups of three ideas to human judges and

ask them to pick which of B or C is more similar to A. Compared to similarity rating

query (how similar is A to B), this triplet based representation of relative similarity is less

cognitively taxing to judges [Tamuz et al., 2011]. We use t-Distributed Stochastic Triplet

Embedding (t-STE) [van der Maaten and Weinberger, 2012] to find an arrangement of ideas

in a two-dimensional space (an “embedding”) that is most consistent with the comparisons

that people made. To minimize the number of comparisons that we ask people, we use an

active learning heuristic [Tamuz et al., 2011] that estimates the expected gain in information

about the position of an idea when comparing it to a particular pair of other ideas.

Informally, we expect the number of comparisons required to embed n ideas to be between

O(n) (scaling with the number of parameters of the model: 2 coordinates per idea) and

O(n log n) (scaling with the number of comparisons required to find the closest existing idea

for each new idea). For the most common ideas, even fewer comparisons should be required

to determine that it is a common idea and thus unlikely to contribute much to the diversity

of a set.

Because our idea maps are constructed such that the distances in the map reflect human

perceptions of dissimilarity, we can use the maps to assess the uniqueness of an individual

idea or the diversity of a subset of ideas. For example, we might define a unique idea as one

that is far from other ideas. We use a simple metric of diversity: the diversity of a set of

ideas is the mean distance between all pairs of those ideas.
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3.3 Ideation Task and Seed Ideas

We collected an initial set of ideas from pilot studies. We used these ideas to validate our

diversity measurement mechanism. We also used a subset of these as ideation examples for

other participants in our main experiment.

Ideation Task The ideation task we chose for this study was to generate birthday messages

for a greeting card for Mary, a female firefighter who is about to turn 50. The instruction

for the task is included in Appendix A. We chose this task because it is short and simple,

yet similar to the tasks of real creative professionals. Previous work in brainstorming and

creativity has also used similar kinds of simple tasks [Guilford, 1967, Torrance, 1968, Smith

et al., 1993, Marsh et al., 1996, Lewis et al., 2011]. Pilot experiments showed that the task

was accessible to untrained participants, and that it elicited a wide variety of ideas of varying

quality. We encouraged participants to generate lots of ideas within a 4-minute time limit and

not to worry about the quality of the ideas. When they finished generating ideas, participants

were asked to select a diverse set of up to 5 of their best ideas.

Participants For our pilot ideation study, we recruited 209 participants from 2 sources:

our own social networks (63 participants) and MTurk (146 participants). For all MTurk

studies in this paper, we limited recruitment to U.S. residents who had completed at least

1,000 HITs1 with greater than 95% approval rate. A participant could do the task only once.

MTurk participants were paid $1.50 for their participation, while uncompensated participants

were given feedback on how the quantity and diversity of the ideas they generated compared

to that of other participants.

1For triplet comparison tasks, only a minimum of 100 approved HITs were required.
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3.4 Idea Map Elicitation and Validation

We then randomly selected 52 seed ideas from the 932 messages generated in the pilot

studies from which to build an idea map.

3.4.1 Collecting Data to Build the Idea Map

We presented three birthday messages to each worker and asked him/her to pick which of

the latter two ideas is more similar to/di�erent from the first. We collected 2818 comparisons

for 778 di�erent triplets from 145 di�erent people. We asked for multiple comparisons for the

same triplets to enable subsequent analysis of inter-rater agreement. Many fewer comparisons

would have been needed just to generate the idea map. The generated idea map is illustrated

in Figure 3.1.

We then computed diversity scores for random subsets of the seed ideas. To illustrate,

here are examples of idea sets to which our metric assigns low diversity scores:

• “After 50 years your light is still burning strong”, “We were worried you wouldn’t be

home on time, so we set your kitchen on fire.”, “How many firefighters does it take to

put out fifty candles?”

• “Wishing you a happy birthday!”, “May the second 50 be as good as the first one!”,

“Happy Birthday!”

While these idea sets get high diversity scores:

• “Your cake is more lit up than a forest fire.”, “Happy Birthday, Mary! 50 years is quite

an accomplishment.”, “Thank you for being there for us. Happy BD”

• “Have a fiery birthday bash!”, “Time for Mary to start rolling down the hill!”, “You

have been one of a kind. Happy Birthday!”
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3.4.2 Validating the Idea Map

To validate the diversity ratings created by the idea map, we collected similarity rat-

ings [Dow et al., 2010] for randomly chosen pairs of ideas in the example set. We then

evaluated how well the measures of similarity captured in the idea map agreed with the

perceptions of similarity provided by human raters.

We recruited 32 MTurk workers to rate similarity of pairs of messages on a scale of 1 (not

at all similar) to 7 (very similar). Each rater rated about 30 pairs of messages. Each pair of

messages was rated by three raters. We normalized (i.e., converted to z-scores) the ratings

within each rater prior to aggregating the results. After excluding 4 workers whose answers

to gold standard items indicated that they were not paying close attention to the task, we

were left with 791 similarity ratings.

Krippendor�’s alpha for the triplet comparison responses used to generate the idea map

was 0.623 (nominal data) while the Krippendor�’s alpha for the similarity ratings was 0.352

(interval data) indicating that comparison queries are, indeed, easier for participants to reach

agreement on than rating queries.

Comparing mean human similarity ratings and our algorithm’s diversity measure we

found a significant correlation (Spearman correlation, fl = ≠0.5284, p < .0001). Note that

our measure captured diversity while the participants were asked to assess similarity, so the

negative correlation coe�cient is the desirable outcome.

Krippendor�’s alpha between mean z-scored similarity ratings (standardized, sign of

similarity inverted) and the diversity measure generated by our algorithm was 0.55. This is

a high level of agreement considering that human raters agreed with each other only with

alpha = 0.35.
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3.5 Main Experiment

We designed our main experiment to explore the possibility of having a large scale

collaborative idea generation system where judiciously chosen ideas from previous contributors

are used as ideation examples for newcomers. Namely, we want to look at the e�ects of

creativity and the diversity of ideation examples–algorithmically sampled from a pool of ideas

based on intended intervention–on the creativity and diversity of ideas produced by later

participants.

3.5.1 Tasks

We used the same ideation task as in the pilot study: generate birthday messages for

Mary, a firefighter who is turning 50. With 20% probability, participants were asked to

perform exactly the same task as in the pilot study, while the others were presented with an

intervention: At the beginning of the ideation task, they were shown a set of 3 example ideas

(which remained visible throughout the idea generation phase).

Interventions We used the same set of 52 ideas generated in the pilot study as possible

ideation examples. We varied the individual creativity of the ideation examples as well as the

diversity of the sets of examples to investigate how these manipulations impacted individual

idea generation.

Two trained coders from our research team independently rated the creativity of each

birthday message on the scale from 1 (not creative) to 3 (very creative). We marked as

“creative” the eleven messages that received scores of at least 2 from both coders. To illustrate,

some of the most creative messages were: “We were worried you wouldn’t be home on time,

so we set your kitchen on fire.” and “How many firefighters does it take to put out a birthday

cake?”, while some of the least creative were: “Hey Mary, It’s Your Birthday, Happy Birthday!”
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and “Love and Happiness to Mary, one of the best!”

Half of the participants who were presented with ideation examples saw messages sampled

only from the pool of 11 creative messages (Creative examples only condition), while those in

the other group saw ideation examples drawn uniformly from the entire pool of 52 ideas (All

examples condition).

To investigate the impact of diversity of ideation examples on individual ideation outcomes,

we used the diversity metric introduced in the previous section to assess the diversity of each

randomly generated set of ideation examples presented in either of the creativity conditions.

The mean diversity score in the All examples condition (M=9.85) was higher than in the

Creative examples only condition (M=8.71), but the di�erence was small (Cohen’s d = 0.36).

The variances of diversity scores in the two creativity conditions were similar. There is

no statistically significant di�erence of diversity of examples between the two conditions

(t(116)=1.84, n.s.)

3.5.2 Procedure

As in the pilot experiment, each participants had 4 minutes to generate as many messages

as they could, and they selected up to 5 as a diverse set of their best ideas.

To measure whether participants paid attention to the given examples (and thus could

have been influenced by our manipulation), at the end of the experiment we showed them

five ideation examples and asked them to select the ideas they saw during the ideation tasks.

Three of the five ideas were the ideas that had been shown at the previous stage while the

other two were distractors.
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3.5.3 Design And Analysis

For the primary analysis we used a 2 ◊ 2 full factorial between-subject design with the

following factors and levels:

• Creativity of ideation examples {All examples, Creative examples only}

• Diversity of ideation examples (modeled as a continuous variable).

Our measures were:

• Creativity of generated ideas assessed by expert raters.

Five experts from oDesk rated creativity of generated ideas. All experts were

professional writers or editors. Each expert rated at least 300 messages on a scale from 1

(not at all creative) to 7 (very creative). Each message was rated by three experts. Our

creativity measure is the average of each expert’s normalized rating for each message.

• Diversity of generated ideas assessed by MTurk workers.

We chose to use an established measure of diversity for our outcomes: as in the

validation experiment, we used average pairwise similarity [Dow et al., 2010]. We

randomly selected 15 participants from the baseline condition, 30 participants from the

All examples conditions and 30 participants from the Creative examples only condition.

For this measure, we only included participants who generated more than one idea. We

only analyzed messages that participants included in their diverse sets of best messages.

For each participant, we asked 3 workers to rate the similarity of each pair of generated

ideas. As before, we converted worker ratings into z-scores prior to analysis. We flipped

the sign of z-scored similarity ratings to derive diversity scores.

For each measure, we conducted an analysis of covariance including both factors and their

interaction.
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(a) (b) (c) (d)

Figure 3.2: (a) Participants in the Creative Only condition generated more creative
ideas than participants in the All condition. (b) There is no di�erence in average
creativity of generated ideas across groups seeing di�erent levels of diversity. (c)
There is no di�erence in the diversity of generated ideas across groups seeing di�erent
levels of creativity. (d) Participants who saw examples with high diversity generated
more diverse sets of ideas than those who saw examples with low diversity.

We also compared our interventions to the baseline condition. For the Creativity of

ideation examples factor, we conducted an analysis of variance with one factor with three

levels: baseline, All examples and Creative examples only. For the Diversity of ideation

examples factor, we first created two discrete diversity conditions: Low diversity (which

included the ideas generated by participants who saw the 25% least diverse sets of ideation

examples) and High diversity. We then conducted an analysis of variance with one factor

with three levels: baseline, Low diversity and High diversity.

3.5.4 Participants

We recruited 138 participants via MTurk to generate the ideas under the same recruitment

limitation as in the pilot experiment.

Three participants did not complete the task and were excluded from further analysis.

There were 27 participants in the baseline condition, 49 in the All examples condition and 59

in the Creative only examples condition.
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Adjustments of Data

We filtered out participants who did not pay attention to the examples — those who

answered correctly fewer than four out of five questions when asked which ideation examples

they saw while ideating. After the exclusion, there were 27 participants in the baseline

condition, 48 in the All examples condition and 52 in the Creative only examples conditions.

3.5.5 Results

127 participants generated 723 ideas and selected 564 ideas to be their best ideas. We

only analyzed the 564 self-selected ideas. For the similarity assessment, 52 workers generated

1,581 ratings.

Creativity of generated ideas

We observed a significant main e�ect of creativity of ideation examples on the mean

creativity of generated ideas, F(1,96)=6.95,p = 0.0098. Participants who were presented with

Creative only ideation examples produced ideas that received higher mean creativity scores

(M=0.21) than participants who were presented with randomly selected ideation examples

(M=-0.079). However, the example diversity had no significant e�ect on the creativity of

generated ideas (F(1,96)=1.13, n.s.).

In a three-way comparison between the baseline condition and the two creativity conditions

(Figure 3.2a), we observed a significant main e�ect of condition on creativity of generated ideas

(F(2,124)=3.91, p = 0.0227). Participants who were presented with Creative only ideation

examples had higher scores (M=0.21) than people in the baseline condition (M=0.0912), while

participants who were presented with random examples had lower scores (M=≠0.079) than

participants in the baseline condition. A post hoc Tukey HSD test showed that neither of

these two pairwise di�erences was significant, however. The significant di�erence responsible
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for the main e�ect was between the Creative only and All examples conditions.

In a comparison of the baseline condition to participants who saw the High diversity and

Low diversity example sets (Figure 3.2b), participants who saw diverse examples generated

ideas with slightly lower creativity scores (M=0.0406) than participants in the baseline

condition (M=0.0912) while those who saw least diverse examples had higher creativity scores

(M=0.249) than participants in the baseline condition. However, this e�ect was not significant

(F(2,75) = 0.99, n.s.).

Diversity of generated ideas

We observed a significant main e�ect of the example diversity on the mean diversity of

generated examples (F(1,56)=2.26, p = 0.028) with diversity of generated ideas increasing

with the increase in the diversity of examples. However, we observed no significant e�ect of

diversity of examples on the creativity of generated ideas (F(1,56)=3.33, n.s.)

In a three-way comparison between the baseline condition and the two creativity conditions

(Figure 3.2c), we observe no significant e�ect of the creativity of examples on the diversity

of generated ideas (F(2,72) = 0.34, n.s.). The three way comparison including the baseline

condition and the participants who saw the High diversity and the Low diversity examples

(Figure 3.2d) also produced no significant e�ect (F(2,41) = 1.56, n.s.)

3.5.6 Additional Analyses

The results so far show that people generate creative ideas when they see creative examples

and that they generate a diverse set of ideas when they see a set of diverse examples. But

are people genuinely motivated and inspired by the examples (as suggested by [Marsh et al.,

1996, Paulus and Dzindolet, 1993, Leggett Dugosh and Paulus, 2005]), or do they simply

produce ideas that closely imitate the examples?

To answer this question, we measured how similar the generated ideas were to provided
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examples. Specifically, we asked 130 MTurk workers to rate similarity of generated messages

to the examples using the same procedure as in the validation experiment. For each generated

idea, we found the closest example out of the three examples that the participant saw. High

similarity to the closest example indicates high degree of fixation. Averaging similarity to the

closest example for each of the participant’s ideas, we get a measure of how similar the ideas

this participant generated were to provided examples.

For the baseline condition (where no examples were given), we measured self-fixation

[Nijstad and Stroebe, 2006] instead: that is, we measured how similar each new idea was to

the closest of the ideas the participant had already generated. While not directly comparable

to the fixation induced by externally-provided examples, this measure provides an informative

baseline for evaluating how much external examples influenced each participant’s ideas.

Rather than fixating participants, we found that good example sets actually did the

opposite. Participants in the ‘Creative only’ condition generated ideas that were rated less

similar to the examples (M=0.43) than the participants in the ‘All examples’ condition

(M=0.65, t(98)=2.49, p=0.0143) (Figure 3.3a). Likewise, participants in the ‘High diversity’

condition generated ideas with lower similarity to most similar example (M=0.41) than the

participants in the ‘Low diversity’ condition (M=0.68, t(46)=2.30, p=0.0260) (Figure 3.3b).

In both interventions, the similarity to examples was lower than the self-fixation observed in

the baseline condition (M=0.79).

We also manually inspected the ideas generated by 20 participants randomly sampled

from all but the baseline condition and we compared the ideas they generated to the examples

they were shown. The results suggest that participants often generated ideas seemingly

entirely unrelated to the examples or added a new spin on an example (e.g., a participant

who saw “How many firefighters does it take to put out fifty candles?” generated “Get ready

to call the fire department, we are about to light the 50 candles!!”). They sometimes tried to

combine ideas from more than one examples (e.g., a participant who saw “We were worried
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you wouldn’t be home on time, so we set your kitchen on fire.” and “Remember, blow out

the candles on your cake, don’t use the hydrant!” generated “Mary! That’s a lot of candles!

If the place catches on fire, at least we won’t have to call anyone!”). There were cases of

surface feature borrowing (e.g., a participant who saw “Mary you could rescue me any day!”

generated “mary you could put out fires for me any day”), but such cases were rare.

These additional analyses suggest that there is no evidence that presenting participants

with examples stifled their creativity. Instead, the results provide additional evidence that

presenting people with particularly creative or particularly diverse ideas may help: those

participants generated ideas that were more original (i.e., less similar to the examples) than

the participants who saw more mundane examples.
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Figure 3.3: (a) Participants in the Creative only condition were less fixated than
those in the baseline and the All examples condition. (b) Participants who saw a set
of diverse examples were less fixated those in the baseline condition and those who
saw a set of examples with low diversity.
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3.6 Discussion

Our studies demonstrate that we can select sets of diverse examples using a scalable

method, and that people presented with the examples so selected generate more diverse ideas

than those presented with random examples. Similarly, seeing examples of ideas that others

deemed as particularly creative improves the creativity of generated ideas compared to seeing

randomly selected examples.

Neither intervention resulted in ideation outcomes that were statistically di�erent from

not showing any examples at all, but the trends were illuminating: participants who saw

creative ideation examples produced more creative ideas than those who saw no examples at

all, but participants who saw randomly selected examples produced the least creative ideas.

We observed a similar trend for diversity: participants who saw the 25% most diverse sets

of examples produced more diverse ideas than participants in the baseline condition, while

participants who saw the 25% least diverse sets of examples produced the least diverse sets

of ideas of all participants.

Two possible explanations of the results arise. One explanation is that people get

inspired by example ideas and incorporate these examples in their own idea generation. This

explanation implies that we can guide how a community explores the space of possible ideas

by exposing people to ideas in particular areas of interest. Another explanation involves social

influence. People might infer the desirable properties of a set of ideas from the example set

that they saw. Here, an example set provides information about the performance of others,

encouraging participants to match the properties of their own ideas to example sets [Paulus

and Dzindolet, 1993, Leggett Dugosh and Paulus, 2005]. While the two explanations involve

very di�erent mechanisms, they both support the value of presenting users with sets of

creative and diverse examples. In order to understand which is the more likely cause, we need

to conduct further investigation. For example, a future study can ask participants about the
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desirable properties of a set of generated ideas and how they use examples to infer whether

they just try to match the properties of an example set or whether they actually incorporate

the content of the examples into their own ideation.

Despite contrasting explanations, our results demonstrate the feasibility and value of

using scalable crowd-powered mechanisms to improve large-scale online collaborative ideation

platforms: instead of leaving contributors to manually browse through hundreds or thousands

of previously generated ideas, these systems can help contributors by selecting manageable

sets of particularly creative and diverse ideas.

One limitation of our work is that we have only studied the e�ect of showing people the

raw ideas that others generated. Alternative interventions include presenting categories or

schemas (as in [Yu et al., 2014b]), or giving specific instructions about what kind of idea to

generate.

Another limitation of our work is timing: the best time to present people with inspirational

examples might be when they run out of their own ideas, not right at the beginning of the

ideation process.

Finally, we suspect that the 4-minute time limit might prevent some participants from

putting in enough cognitive e�ort to process examples deeply enough to benefit from them.

3.7 Conclusion

One challenge in designing large-scale collaborative online ideation platforms is how to

leverage the ideas generated by others to e�ectively inspire future (or returning) contributors.

As prior research suggests and as our results corroborate, showing people random examples

of prior ideas has little positive impact on what new ideas people generate. However, prior

research suggests that presenting people with sets of particularly creative or particularly

diverse ideas is likely to improve the creativity and diversity of generated ideas.
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These prior findings were not easy to act on: while there exist scalable crowd-powered

methods for identifying the most creative ideas among thousands, the same is not true for

finding sets of diverse ideas. In this paper, we contribute a scalable method for evaluating

diversity of sets of examples by using simple similarity comparisons from non-expert con-

tributors (members of the ideation community or an external crowd) to create an idea map.

An idea map is a two-dimensional embedding of the ideas such that the pairwise distances

between ideas on a map correspond to human perception of dissimilarity. Idea maps make it

possible to sample sets of ideas of varying levels of diversity by picking ideas that are close to

or far from each other.

The results of our study show that this method is indeed e�ective: participants who

saw sets of diverse examples generated using our method produced more diverse ideas than

participants who saw randomly selected examples. Our study also corroborates previous

findings that showing people examples that others consider particularly creative results in

more creative ideas than showing random ideas.

The goal of this chapter was to inform the design of future systems for supporting

collaborative ideation at large scale. Our scalable method for assessing diversity, together

with existing creativity metrics [Salganik and Levy, 2012, Yu and Nickerson, 2011, Tanaka

et al., 2011, Xu and Bailey, 2012], can enable creativity support systems to adjust which

examples are shown to contributors and thus, as we have shown, modulate the quality and

diversity of the ideas that they contribute. These methods, thanks to their lightweight nature,

can be either outsourced to external micro-task market or embedded in the ideation workflow

where contributors provide information about the example ideas for succeeding contributors.
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Chapter 4

IdeaHound: Integrated-crowdsourcing

for Creativity Enhancing

Interventions

This chapter has adapted, updated, and rewritten content from a paper at UIST 2016 [Sian-

gliulue et al., 2016]. All uses of “we”, “our”, and “us” in this chapter refer to coauthors of

the aforementioned paper.

Prior work on creativity support tools demonstrates how a computational semantic model

of a solution space can enable interventions that substantially improve the number, quality

and diversity of ideas. However, automated semantic modeling often falls short when people

contribute short text snippets or sketches. Innovation platforms can employ humans to

provide semantic judgments to construct a semantic model, but this relies on external workers

completing a large number of tedious micro tasks. This requirement threatens both accuracy

(external workers may lack expertise and context to make accurate semantic judgments) and

scalability (external workers are costly).

In this chapter, we introduce IdeaHound, an ideation system that seamlessly integrates
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the task of defining semantic relationships among ideas into the primary task of idea generation.

The system combines implicit human actions with machine learning to create a computational

semantic model of the emerging solution space. The integrated nature of these judgments

allows IdeaHound to leverage the expertise and e�orts of participants who are already

motivated to contribute to idea generation, overcoming the issues of scalability inherent to

existing approaches. Our results show that participants were equally willing to use (and

just as productive using) IdeaHound compared to a conventional platform that did not

require organizing ideas. Our integrated crowdsourcing approach also creates a more accurate

semantic model than an existing crowdsourced approach (performed by external crowds).

We demonstrate how this model enables helpful creative interventions: providing diverse

inspirational examples, providing similar ideas for a given idea and providing a visual overview

of the solution space.

4.1 Motivation and Contributions

Large creative online communities will transform the way our society innovates. Existing

communities, like OpenIDEO (openideo.com), where people propose solutions to social

problems, and platforms, like coUrbanize (courbanize.com), where cities gather ideas from

their citizens, attract large numbers of users, many of whom contribute ideas or designs. The

promise of these online communities is that participants will benefit from exposure to ideas

of others and, thus inspired, will generate better ideas than they would have otherwise. In

practice, however, crowd innovation challenges result in large quantities of simple, mundane

and repetitive ideas [Bjelland and Wood, 2008, Klein and Garcia, 2015, Riedl et al., 2010].

Consequently, many organizations have come to see crowd innovation platforms more as

marketing gimmicks that energize their customers or constituents, rather than real sources of

innovation. Meanwhile, numerous creativity-enhancing interventions targeted at individuals
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Whiteboard to organize idea

Clusters  
of ideas

Toggle button to show the Idea 
Map or user workspace

(A)

(B) (C)

(D) (F)

SEE SIMILAR IDEAS 

A representative idea for a cluster of ideas

Request similar ideas

(E)

Like an idea

Archive an idea

Figure 4.1: IdeaHound interface. (A) A box where users can type and submit
their ideas; (B) When users request ideas from others, they appear on the Others’
Ideas pane, (C) When users submit an idea, it first appears on the Your Ideas pane;
Users can move ideas from (B) and (C) to organize on the whiteboard area. When
they place ideas close to each other, a cluster will form around the ideas. (D) A
minimap of the workspace. Users can pan and zoom the whiteboard or control the
zoom from the minimap view. (E) When they hover over an idea, a control panel
allows users to like the idea, remove the idea from the workspace, or open up a
Details pane for that idea. On the Details pane, users can click “See similar ideas” to
request ideas of others that are similar to that idea. (F) The idea map visualization
is a 2D map that gives an overview of the solution space. Each dot represents an
idea. The user’s own ideas are in orange while the ideas from others are in yellow. A
label for each cluster of ideas on the idea map visualization shows a sampled idea
from that cluster.

and small groups exist, and many of these interventions have been demonstrated to measurably

improve the creative outcomes. How might we build on these successes to improve the quality

and diversity of ideas contributed on large scale collaborative ideation platforms?

Many creativity-enhancing interventions leverage corpora of relevant design examples

and a computational insight into the structure of the solution space revealed by those

examples. For example, Design Gallery for 3D modeling [Marks et al., 1997] and other
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similar systems [Talton et al., 2009, Lee et al., 2010] help users gain a quick intuition of

the solution space and facilitate recombination of disparate ideas [Nickerson et al., 2008]

by showing them multiple diverse alternatives. ReflectionSpace [Sharmin and Bailey, 2013]

and Freed [Mendels et al., 2011] support reflection in the design process by presenting users’

designs in the context of other related artifacts. Adaptive Ideas web design tool [Lee et al.,

2010] and DesignScape [O’Donovan et al., 2015] promote broad exploration of the solution

space during the divergent phase of idea generation by showing a diverse set of examples

and design alternatives. They also support refinement by allowing users to explore sets of

closely related ideas, all of which pursue the same general approach, but in subtly di�erent

ways [Lee et al., 2010, O’Donovan et al., 2015].

All of these systems leveraged some computational representation that made it possible

to tell which ideas were similar to each other and which were di�erent. They either leveraged

the fact that the design space was parameterized to begin with (e.g., 3D models in [Marks

et al., 1997]) or they used some mechanism to automatically compute descriptive features of

the artifacts (e.g., [Talton et al., 2009, Lee et al., 2010]). On existing large scale collaborative

ideation platforms, people tend to communicate their initial ideas in the form of short text

snippets or sketches. Thus, no a priori parametrization of the solution space is available.

Furthermore, feature discovery mechanisms such as probabilistic topic modeling [?] do not

perform well with such representations [Chang et al., 2009, Chuang et al., 2012].

Crowd-powered systems o�er a possible solution: by judiciously combining human judge-

ment and machine learning, it is possible to discover useful structure in collections of arbitrary

artifacts [André et al., 2014, Chilton et al., 2014, Siangliulue et al., 2015a, Tamuz et al., 2011].

However, existing crowd-powered approaches have a crucial limitation on their applicability

to large-scale collaborative ideation platforms: they depend on people completing a large

number of tedious and repetitive micro-tasks. This requirement means platforms that seek to

leverage such approaches must employ large numbers of external workers (e.g., from online
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labor markets such as Amazon Mechanical Turk or UpWork). This is not a desirable approach,

for two main reasons. First, employing large numbers of workers is expensive, which limits

the ability of these systems to scale to very large innovation platforms. Secondly, even if

cost was not a concern, many online creative communities assume some amount of shared

knowledge (e.g., local knowledge among contributors to a municipal participatory budgeting

platform), which would not be available to workers hired outside the community. Thus, the

human judgements on semantic relationships among ideas should come from the creative

community itself.

This chapter’s first study suggests that it is infeasible to expect unpaid, intrinsically-

motivated participants to complete a secondary task of judging ideas of others in addition to

the primary task of generating ideas. We recruited unpaid, intrinsically motivated participants

to generate ideas and we then asked them to evaluate ideas generated by other members of the

community (rate similarity between ideas and idea quality). When we required participants

to complete these evaluation tasks, they found the tasks to be tedious and repetitive; when

the completion of the tasks was voluntary, participants did not complete enough of those

tasks to inform the creation of a reliable computational model.

In response to this challenge, we designed IdeaHound, a self-sustainable system for

supporting creative ideation at scale. A crucial, novel component of IdeaHound is an

integrated crowdsourcing approach that seamlessly integrates the potentially tedious secondary

task of analyzing semantic relationships among ideas with the more intrinsically-motivated

primary task of idea generation. Our integrated approach leverages the insight that people

naturally tend to spatially organize their inspirational material (including their own ideas)

such that ideas and inspirations that share something in common are grouped together.

IdeaHound thus presents users with a prominent a�ordance for spatially organizing their

own ideas and ideas of others. IdeaHound continuously monitors the evolving spatial

organizations created by all members of the community and creates a global model capturing
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relative similarities and di�erences among ideas. This model can help the community

accomplish tasks both during idea generation (e.g., finding inspirations and gaining overview

of solution space) and after idea generation (e.g., organizing ideas and selecting ideas).

Figure 4.1 illustrates the main features of IdeaHound.

Our empirical studies demonstrate the viability of this approach. In Studies 2 and 3,

participants implicitly defined semantic relationships among ideas by spatially organizing

their own ideas and those of their peers while they were generating novel ideas. The results of

these studies demonstrate that, even though participants were not explicitly asked to spatially

organize ideas, they naturally did so frequently and thoughtfully enough to create an accurate

computational model of the semantic relationships among ideas. The resulting model agreed

with standard (and more expensive) human judgements more closely than a computational

model created using a conventional outsourcing approach [Siangliulue et al., 2015a], where a

separate crowd (of equally qualified participants) completed stand-alone semantic judgment

tasks. Further, participants generated as many ideas (despite doing the extra work arranging

ideas) and were as satisfied with the integrated crowdsourcing interface as they were with an

equivalent conventional interface that required no additional work besides submitting their

own ideas and browsing the ideas of others.

We demonstrate how the resulting semantic model can be used to enable three creativity-

enhancing interventions in IdeaHound: sampling diverse inspirational examples, exploring

similar ideas, and providing a visual overview of the emerging solution space. In Study 4, we

conducted a preliminary end-to-end evaluation of IdeaHound. The results show that people

found the suggested diverse sets of ideas helpful for their idea generation. They also found

that the map visualization provided them with a quick and useful overview of the evolving

solution space.

This chapter makes the following contributions:

1. A crowdsourcing approach that integrates the potentially tedious task of evaluating

50



creative ideas with the more exciting task of idea generation, such that contributors,

who are intrinsically motivated only to contribute to idea generation, perform both

tasks.

2. An end-to-end system, called IdeaHound, which uses crowd-contributed spatial

arrangements of ideas to construct a robust model of semantic relationship among

ideas. IdeaHound uses this model to enable three creativity-enhancing interventions:

sampling diverse inspirational examples, exploring similar ideas, and providing a visual

overview of the emerging solution space. While similar interventions were previously

used to enhance the performance of individuals and small groups, IdeaHound makes

it possible to support creative communities of hundreds or thousands of contributors.

3. Empirical studies that demonstrate the need for and the viability of an integrated

crowdsourcing approach for supporting enhanced collective ideation at scale.

4.2 Design Goals

The end goal of this work is to improve large-scale collaboration with creativity-enhancing

interventions, such as providing diverse inspirational examples, enabling exploration of similar

ideas (for iteration), and providing a real-time “map” or overview of the solution space. As

we have seen in the review of prior work, these interventions depend on having access to a

semantic model that captures the structure of the solution space (e.g., how solutions relate

to each other). However, none of the existing solutions for constructing such models are

adequate: the completely automated approaches are unlikely to work well with short text

snippets and sketches, while the crowd-powered solutions depend on large numbers of external

workers completing many tedious/repetitive semantic judgment tasks.

Therefore, the technical focus of this work is to create an approach for semantic modeling

of solution spaces that meets two main requirements:

51



1. Nearly Real-time. The approach should be able to provide a nearly real-time model of

the solution space.

2. Self-sustainable. The approach should not depend primarily on external labor.

Our general approach is to combine methods from crowdsourcing and machine learning

research. Specifically, similarly to [Siangliulue et al., 2015a], we rely on a modest number of

human judgements regarding relative similarities of pairs of ideas and we then use machine

learning techniques to e�ciently combine those human judgements into a consistent and

comprehensive model of the emerging solution space. Unlike the prior work, however, we seek

to engage the members of the creative community themselves in the process of constructing

the semantic model instead of outsourcing the task to external crowds. In the following

sections, we describe the rationale, design, technical details, and evaluation of our approach.

We also demonstrate how this approach allowed us to build IdeaHound, an end-to-end

self-sustainable system that enables three creativity interventions for enhancing collective

ideation at scale.

4.3 Study 1: Separate Tasks to Collect Semantic Rela-

tionships Among Ideas

A straightforward approach to solicit the necessary human judgements of semantic

relationships among ideas is to explicitly ask the members of the community to contribute

these judgements. We tested this approach in a study conducted on the LabintheWild.org

platform [Reinecke and Gajos, 2015], which attracts intrinsically motivated, unpaid online

participants who take part in studies in return for informative feedback on their performance.

We recruited 2,061 participants to generate ideas for birthday messages for a 50-year-old

female firefighter. The study had four parts: 1) participants generated as many ideas as
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they could in 4 minutes, 2) after they finished generating ideas, they were asked to provide a

small set (5–10) of human judgments of semantic similarity between ideas (using the same

mechanism as [Siangliulue et al., 2015a]), 3) they were presented with a results page, and

4) they ranked ideas of others based on their quality. The last part of the experiment was

optional and participants could skip this part at any time.

141 of the 2,061 participants who finished generating ideas in part 1 dropped out before

completing the semantic judgments in part 2. Further, fewer than half of the participants (743

out of the remaining 1,920) finished the optional ranking task in part 3. Some participants

noted in their post-study open-ended comments that the semantic judgement and ranking

tasks were repetitive, unappealing and took too much time. One participant almost gave up

on the semantic judgment task because it was “boring and cruel”. This suggests that when

given a choice to optionally complete these extra human judgment tasks, few participants on

these platforms will choose to do so.

4.4 Integrated Crowdsourcing of Creative Ideas and

Semantic Relationships

Instead of asking users to provide insights into a solution space by doing tedious tasks that

detract from generating ideas, we sought to design an interaction that seamlessly integrated

subjective judgement tasks with idea generation. Figure 4.1 shows the main interface for the

final prototype.

In designing this solution, we drew inspiration from several existing systems, which require

diverse kinds of work to be accomplished, but whose users are intrinsically motivated to

do only a subset of those tasks. For example, Duolingo integrated the potentially tedious

secondary task of translating real world text with the intrinsically valuable primary activity

of learning a new language. In the Crowdy system [Weir et al., 2015], people who want
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to learn specific skills (e.g., web programming) improve video tutorials for future learners

(the secondary task) as a byproduct of learning from those tutorials (the primary task). The

users of the American Sign Language (ASL) flashcard quiz [Bragg et al., 2015] improve the

feature-based indexing of the signs for the new ASL dictionary (the secondary task) as a

byproduct of practicing the signs (the primary task). In another system [Komarov and Gajos,

2014], students generate formative feedback on each other’s assignments (the secondary task)

as a byproduct of studying for an exam (the primary task). While all of these prior systems

leveraged the users’ desire to learn, we believe the approach of integrating a valuable but

potentially tedious secondary task into an intrinsically motivating task generalizes to other

settings where users have di�erent intrinsic motivations.

In the rest of this section, we describe the iterative development of our integrated

crowdsourcing approach through a series of formative prototypes.

4.4.1 Initial Design: Continuous Spatial Arrangement

We based our design on the insight that people naturally spatially organize their in-

spirational material. The key feature of our design is a whiteboard space where users can

arrange their own ideas or ideas of others. Because the spaces where users’ own ideas and

the inspirational examples first appear are very small, users naturally tend to drag ideas

(their own and those of others) onto the canvas and organize them spatially. Because the

whiteboard naturally a�ords continuous spatial arrangements (placing ideas close or far from

each other), we initially built on the SpAM approach of collecting similarity information

from people’s spatial arrangements [Goldstone, 1994, Hout et al., 2013]. From each spatial

arrangement generated by a user, our system extracted similarity scores from relative distances

between pairs of ideas. Then the system aggregated these implicit similarity judgements from

users’ whiteboards using multidimensional scaling (MDS) algorithm to generate an aggregate

semantic model.
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Our pilot study with this version of the prototype showed that people naturally organized

ideas spatially without instructions to do so, but not in the way that the system was designed

for: Instead of organizing ideas such that physical distances among them would represent

the degree of dissimilarity, as SpAM assumes, people tended to aggregate ideas into discrete

clusters. Open-ended comments from participants revealed that such discrete clustering

(rather than continuous spatial arrangement) gave them a better sense of the emerging

themes and provided a more readable “big picture” of the possible approaches to the creative

challenge at hand.

4.4.2 Revised Design: Explicit Clustering

In our second design we made cluster-forming actions explicit. Whenever a user brings

two ideas into close proximity, an outline is drawn around both ideas to indicate that they are

now grouped into a cluster. Cluster management is fluid yet explicit: when a user brings an

idea close to an existing cluster, the cluster automatically expands; when the user drags an

idea away from a cluster, the idea is removed from the cluster. Although it is possible for an

idea to belong multiple clusters, a user can put it in only one cluster to keep the interaction

simple.

According to feedback from our pilot studies, this approach was intuitive and matched

users’ expectations well. However, they reported that they sometimes forgot what concept

they had intended to capture with each cluster. This was particularly frustrating to the users

when ideation was performed over the course of several days: when they returned to the task

after a day’s break, they had a di�cult time remembering the organizational structure they

had been working to create.

Also, when we analyzed clusters created as part of several studies, it became clear that

not all clusters were used to capture semantic similarity. Instead, some clusters were used to

store “other” ideas or user’s own ideas regardless of their semantics. This was problematic
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because it created a mismatch between the actual semantics of some of the clusters and the

assumptions made by our algorithm.

4.4.3 Final Design: Explicit Clustering with Labels

To address these two issues, in our final prototype we introduced a clear a�ordance to

add optional textual labels to clusters. This design turned out to be very e�ective. Not only

did it help participants remember better what each cluster was intended to capture, it also

substantially reduced the number of clusters that did not capture semantic similarity. Thus,

this design choice simultaneously made the spatial organization capability more useful to the

users and made the user-generated clusters a more valuable source of data for the machine

learning algorithm.

4.4.4 Computational Model

As illustrated in Figure 4.2, to compute a global computational representation of how

similar or di�erent the collected ideas are from each other, our system initially constructs a

similarity matrix from clusters across the users. Here, the similarity between two ideas is the

empirical probability that the two ideas will be in the same cluster if they are both placed

on the same whiteboard. This similarity matrix is sparse, however: not all pairs of ideas

appear on the same whiteboards, so not all pairwise similarities are estimated. Therefore, the

system computes an approximate idea similarity matrix (but one that estimates all pairwise

similarities) using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm [Van

Der Maaten, 2014]. Following [Siangliulue et al., 2015a], we refer to this embedding as an

idea map. This embedding provides an approximate estimate of similarities among all pairs

of ideas, for which at least some similarity data are available.
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Figure 4.2: Computational model generation process. The system 1) aggregates
grouping information from all users’ whiteboard organization, 2) constructs a sparse
similarity matrix from aggregated grouping, and 3) generates an “idea map” that
puts similar ideas closer to each other and keeps dissimilar ideas far from each other
according to similarity matrix in 2).

4.5 Evaluation of the Technical Approach

The central goal of our approach is that the potentially tedious secondary task of organizing

ideas be integrated seamlessly into the intrinsically motivating primary task of idea generation.

We evaluated our approach in two ways. In Study 2, we evaluated the experience and creative

output of the users who used the system with our integrated crowdsourcing approach,

compared to users who used a conventional interface. In Study 3, we evaluated the accuracy
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of the semantic model created using our integrated approach by comparing it to a model

generated using a previously-validated method [Siangliulue et al., 2015a] that relies on

outsourced crowd workers.

4.5.1 Study 2: User Experience and Creative Output with the

Integrated Crowdsourcing Approach

In this study, we compared the experience and creative output of the users who used

the integrated crowdsourcing approach, to users who used a conventional interface. We

hypothesized that there would be no di�erence in experience and creative output between those

who ideated with the integrated crowdsourcing interface and those who used a conventional

interface.

Design

We used a between-subjects design with one factor with two conditions:

• Integrated: Participants used the integrated crowdsourcing interface like the one shown

in Figure 4.1 to generate ideas. They could request to see ideas of others by clicking

on the “SEE IDEAS OF OTHERS” button (Box A of Figure 4.1). The system then

presented a set of up to three ideas. From ideas for which the system had information,

the system sampled the first and the second idea. The first idea was selected randomly

and the second idea was the idea that was predicted to be the most di�erent from

the first idea; the third idea was sampled randomly from ideas for which the system

had no information. If there were no more unseen ideas, the system asked the user

to request ideas again later. Participants could organize their own ideas and ideas of

others together on the whiteboard. Unlike the interface in Figure 4.1, the participants

could not request to see similar ideas to an idea or look at an idea map visualization.
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Figure 4.3: The interface for the Single-task condition of Study 2. The requested
ideas of others are automatically placed on the left pane while participant’s own ideas
appear on the right pane. Participants could not move ideas around by dragging.

• Single-task: Participants used a more conventional system without an integrated

whiteboard (Figure 4.3). They could request to see ideas of others by clicking on a

“SEE IDEAS OF OTHERS” button (bottom right of Figure 4.3). The system then

presented a set of three ideas sampled randomly. As with the other design, if there

were no more unseen ideas, the system asked the user to request ideas again later.

Task

Participants, who were recruited via Amazon Mechanical Turk (MTurk), generated ideas

in asynchronous groups of 6–12. Each group was prompted to generate ideas for one of two

prompts: 1) features for the next version of a micro task market platform like MTurk (New

features), and 2) new tasks that can be posted on a microtask market (New tasks). We
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designed these tasks such that our participants would have the relevant domain expertise and

the motivation to generate novel and valuable ideas. We gave participants freedom to choose

when to start their idea generation session so not all participants had to generate ideas at

the same time. Participants could complete one, two or three idea generation sessions with a

mandatory break of at least 15 minutes between sessions. We set up the task this way to

simulate real collaborative asynchronous idea generation platforms where contributors may

revisit the platform to contribute more ideas at di�erent time. Early arrivers might have had

a di�erent experience from those who started later because they saw di�erent compositions

of ideas.

Procedure

Before starting the first idea generation session, participants answered a demographics

survey. Then participants went over the tutorial of the system and completed a practice

task. Following insights from prior UI evaluations on MTurk [?], the practice task required

participants to use each major feature of the system at least once before they could proceed

to the main task. For each idea generation session, participants spent at least 12 minutes

on generating ideas. At the end of the session, they answered survey questions about their

experience in that session. They were required to wait at least 15 minutes before starting

another session. If they chose to do the next session, the system would bring them back to

the saved workspace where they ended the prior session.

Participants

We recruited 80 participants via MTurk to generate ideas. We limited recruitment

to workers who had completed at least 1,000 HITs with approval rate greater than 95%.

After seeing some participants’ comments on grammatical errors of submitted ideas in the

first two groups, we limited recruitment to U.S. residents (54 participants) for the rest of
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the experiment. Participants were paid $2.00, $3.50 or $5.00 depending on whether they

completed one, two or three ideation sessions.

Out of 80 recruited participants, 55 participants finished at least one ideation session; 23

participants dropped out of the experiment during the tutorial session, and 2 participants

started but did not finish the first session. We only included the participants who finished at

least one session in our analysis. The participants were randomly assigned to six di�erent

groups as summarized in Table 4.1.

27 participants (87%) in the Single-task condition finished all three sessions, 2 participants

finished only two sessions and 2 participants finished only one session. 16 participants (67%)

in the Integrated condition finished all three sessions, 2 participants finished only two sessions

and 6 participants finished only one session. On average participants in the Single-task

condition completed 1.81 sessions compared to 1.42 sessions in the Integrated condition. This

di�erence was marginally significant (‰2(1, N = 55) = 3.632, p = 0.0567)

Measures and analysis

We compared the creative output of participants in the two conditions on the following

measures.

• Number of submitted ideas per participant

• Diversity of submitted ideas: We used the same diversity measure as in [Siangliulue et al.,

2015a]. Specifically, for each group, we randomly sampled 50 pairs of submitted ideas

(300 pairs for 6 groups). We recruited 58 independent MTurk workers to rate similarity

of pairs of ideas on a scale of 1 (not at all similar) to 7 (very similar). Each rater rated

25 pairs of ideas from the experiment. To ensure that the workers understood the task,

they also rated 4 practice pairs that were rated as very similar or very di�erent by

one of the authors. Each pair of ideas was rated by 3–4 raters. We normalized (i.e.,

61



converted to z-scores) the ratings—including those of practice pairs—within each rater

prior to aggregating the results. We flipped the sign of z-scored similarity ratings to

derive diversity scores of a pair.

• Creativity of submitted ideas: We used the same creativity measure as in [?]. For each

group, we randomly sampled 50 submitted ideas (300 ideas for 6 groups). We recruited

58 independent MTurk workers to rate ideas on two scales: novelty (1= not at all novel,

7 = very novel) and value (1 = not at all valuable, 7 = very valuable). Each rater rated

25 ideas. Each idea was rated by 4–5 raters. As before, we converted worker ratings

into z-scores prior to analysis.

To compare user experience between the two systems, we collected participants’ subjective

responses (reported on a 7-point Likert scale) to questions that related to the following three

aspects of their ideation experience:

• Perception of helpfulness of ideas of others as selected by the system (4 questions)

• Perception of helpfulness of the system (3 questions)

• Mental e�ort and task di�culty (2 questions)

We list the actual survey questions in Table 4.2. Noting that most participants finished

either just one or all three sessions, we report the survey results after the first and the third

sessions.

We also asked the participants in the Integrated condition to answer a separate set of

7-point Likert-scale questions related to their experience of organizing ideas on the whiteboard;

Q10: “Organizing ideas on the whiteboard helped me generate ideas. (1 Strongly disagree - 7

Strongly agree)” and Q11: “Organizing ideas on the whiteboard got in the way of generating

ideas. (1 Strongly disagree - 7 Strongly agree)”

We used analysis of variance for analyses involving Number of submitted ideas, Diversity

of submitted ideas and Creativity of submitted ideas. We used ordinal regression for all
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Task Group Condition
Number3of3
participants

Number3of3
sessions

#3of3
generated3
ideas

G1 Organic 8 22 58
Features2for2AMT G2 Baseline 12 35 217

G3 Organic 6 16 91
G4 Baseline 9 26 95

New2types2of2HIT G5 Organic 10 20 160
G6 Baseline 10 26 143

Whiteboard

Whiteboard

Whiteboard

Single-task

Single-task

Single-task

Integrated

Integrated

Integrated

Table 4.1: Number of participants, sessions and submitted ideas in each group.

analyses involving Likert-scale responses. We also used ordinal regression to compare the

number of sessions completed under the two conditions.

A lack of statistically significant result does not constitute valid evidence for the lack of

actual di�erence. Because we wish to demonstrate a lack of substantial di�erences in the

quality of the experience between Integrated and Single-task conditions, we also computed

e�ect sizes (Cohen’s d) for all subjective measures and some of the performance measures. As

is customary, we interpret e�ect sizes between 0.2 and 0.49 as small, between 0.5 and 0.79 as

moderate, and those larger than 0.8 as large [Cohen, 1977]. If our goal were to demonstrate

the presence of statistically significant di�erences, we would have adjusted the p-values to

account for the fact that we conducted multiple statistical comparisons based on data from a

single experiment [Sha�er, 1995]. Given that our goal is the opposite, we report raw p-values

throughout.

Results

No substantial di�erence in the number and diversity of examples seen. On

average, the Single-task participants requested 33.8 ideas (SD=26.77), while the Integrated

participants requested 21.6 ideas (SD=19.97). This di�erence is not significant (F (1, 53) =
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3.4691, p = 0.0681). The average diversity scores of seen example sets were 0.074 (SD=0.46)

in the Single-task conditions and -0.055 (SD=0.55) in the Integrated condition. This di�erence

was small (d = 0.26) and not statistically significant F (1, 58) = 0.9586, p = 0.3316).

To derive the diversity score of examples we used a method analogous to the one used to

compute the diversity of submitted ideas: We first randomly sampled 10 sets of seen examples

from each group (60 sets for 6 groups). We recruited 30 independent MTurk workers to rate

similarity of the 177 pairs of ideas on a scale of 1 (not at all similar) to 7 (very similar). Each

rater rated up to 30 pairs of ideas. Each pair of ideas was rated by 5 raters. We normalized

(i.e., converted to z-scores) the ratings within each rater prior to aggregating the results. We

flipped the sign of z-scored similarity ratings to derive diversity scores of a pair. For each

example set, we calculated the diversity score of an example set as the averaged pairwise

diversity scores of ideas in that set.

No substantial di�erence in productivity. The average number of ideas submitted

per session by a participant in the Single-task condition was 5.34, while the average number

in the Integrated condition was 5.30. This di�erence was neither substantial (d = 0.013) nor

significant (F (1, 53) = 0.0022, p = 0.9626).

No substantial di�erence in the diversity of submitted ideas. The average

diversity score of submitted ideas in the Single-task condition was 0.132, while the average

diversity score of submitted ideas in the Integrated condition was 0.105. This di�erence was

neither substantial (d = 0.042) nor significant (F (1, 299) = 0.1311, p = 0.7176).

No substantial di�erence in the creativity of submitted ideas. The average

novelty score of submitted ideas in the Single-task condition was 0.030, while the average

novelty score of submitted ideas in the Integrated condition was -0.030. This di�erence was

neither substantial (d = 0.099) nor significant (F (1, 299) = 0.7309, p = 0.3933).

The average value score of submitted ideas in the Single-task condition was 0.028, while the

average value score of submitted ideas in the Integrated condition was -0.028. This di�erence
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Measure Question
Session-
No.

Baseline-
(Mean)

Organic-
(Mean) p8value

Effiect-
size

Q1:$On$average,$the$ideas$of$others$that$you$saw$were$boring(1)$:$interesting(7) 1 5.58 5.63 0.9221 :0.0299
3 5.67 5.19 0.4708 0.3110

Perception$of$helpfulness$of$
ideas$of$others

Q2:$Seeing$ideas$of$others$helped$me$come$up$with$better$ideas.$Strongly$disagree(1)$:$
Strongly$agree(7) 1 5.00 5.29 0.6744 :0.1533

3 5.26 4.56 0.1954 0.3888
Q3:$Seeing$ideas$of$others$helped$me$come$up$with$more$ideas.$Strongly$disagree(1)$:$
Strongly$agree(7) 1 4.90 5.21 0.6819 :0.1638

3 5.07 4.69 0.4715 0.2277
Q4:$Seeing$ideas$of$others$helped$me$get$unstuck.$Strongly$disagree(1)$:$Strongly$
agree(7) 1 4.90 5.21 0.6861 :0.1544

3 5.11 4.50 0.2233 0.3224
Q5:$The$system$gave$me$a$sense$of$what$ideas$other$people$were$exploring.$Strongly$
disagree(1)$:$Strongly$agree(7) 1 5.68 5.33 0.4304 0.1842

3 6.04 5.50 0.1079 0.3842
Perception$of$helpfulness$of$
the$system

Q6:$The$system$helped$me$keep$track$of$how$my$ideas$related$to$those$of$others.$
Strongly$disagree(1)$:$Strongly$agree(7) 1 5.39 5.29 0.6075 0.0513

3 5.89 5.44 0.2971 0.2769
Q7:$Seeing$ideas$of$others$gave$me$a$good$sense$of$the$range$of$possible$solutions$to$
this$challenge.$Strongly$disagree(1)$:$Strongly$agree(7) 1 5.55 5.17 0.3873 0.2191

3 5.89 5.63 0.2427 0.2042
Q8:$How$much$mental$effort$(e.g.,$searching,$remembering,$thinking,$deciding)$did$the$
task$take?$Low$mental$effort$(1)$:$High$mental$effort$(7) 1 5.52 6.21 0.0452* 0.6058*

Mental$effort$and$task$
difficulty 3 6.07 6.19 0.5962 :0.0851

Q9:$How$easy$or$difficult$was$this$task?$Very$easy$(1)$:$Very$difficult$(7) 1 3.81 4.42 0.1469 :0.3763
3 5.37 5.69 0.4738 :0.1952

WBINTST

Table 4.2: Summary of subjective responses after session 1 and after session 3. ST
stands for Single-task and INT stands for Integrated. Participants rated the INT
condition as demanding significantly more mental e�ort than the ST condition. We
used Cohen’s d to capture e�ect size.

was neither substantial (d = 0.096) nor significant (F (1, 299) = 0.6843, p = 0.4088).

Participants in both conditions perceived the system-selected ideas of others

as similarly helpful. Questions Q1 to Q4 in Table 4.2 measured the participants’ perception

of the usefulness of the ideas of others selected by the system. We found no significant

di�erences in perception of helpfulness of ideas of others between the Single-task and the

Integrated condition and none of the e�ect sizes was larger than small. We reported the

p-values and e�ects sizes in Table 4.2.

Participants in both conditions perceived the system as similarly helpful. Ques-

tion Q5 to Q7 in Table 4.2 measured the participants’ perception of the usefulness of the

ideation system. We found no significant di�erence in perception of helpfulness of system

between the Single-task and the Integrated condition and none of the e�ect sizes was larger
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than small.

The whiteboard interface initially demands more mental e�ort. Question Q8

and Q9 in Table 4.2 measured the participants’ perception of mental e�ort required to do

the task and the di�culty of the task. We found no significant di�erence of task di�culty

between the Single-task and the Integrated condition and none of the e�ect sizes was larger

than small.

However, after completing the first session, participants in the Integrated condition

reported significantly higher mental e�ort than in the Singled-task condition (p = 0.0452)

and this di�erence was moderate in magnitude (d = 0.6058). However, this di�erence was

no longer present after session 3, suggesting that the system became easier to use once

participants gained some practice with it.

Organizing ideas on the whiteboard helps in generating ideas and does not

get in the way. The level of organization varied across participants in the Integrated

condition (Figure 4.4). On average, a participant put 21.2 ideas on the board (SD=15.35)

and formed 4.79 clusters (SD=3.52).

The responses to the 7-point Likert scale questions for participants in the Integrated

condition show participants found that organizing ideas helped them generate ideas (Q10,

session 1: M=5.17, SD = 1.69, session 3: M=4.69, SD=2.21) and that it did not get in the

way of generating ideas (Q11, session 1: M=2.50, SD = 1.82, session 3: M=3.13, SD=2.31).

When further prompted to explain how organizing ideas helped them generate ideas,

participants stated that organizing ideas helped them “avoid repetition, and build o� of

previous ideas” [P25] and “[give] a clear picture of how things were grouped and [help]

brainstorm more [ideas] based on grouping” [P51]. When further prompted how organizing

ideas got in the way of generating ideas, most participants either did not provide a response or

stated that the activity didn’t get in the way of idea generation. One participant commented

that she “did spend a bit of time organizing things instead of generating ideas. But it still
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helped in other ways” [P31].

The sparsity of similarity matrix (from direct human judgement) increases

with the number of generated ideas. Participants in the Integrated condition organized

both ideas of others (10.6 ideas on average) and their own (11.5 ideas on average). The

proportion of idea pairs that actually received human judgements in the Integrated group

varied from 0.28 (G5, 160 ideas) to 0.53 (G1, 58 ideas). The median of number of human

judgements for each pair was 1 for all groups in the Integrated condition. The sparsity

naturally increases with the number of ideas as the size of the similarity matrix grows

quadratically with the number of ideas. As we will see in the next section, this sparsity does

not significantly impact the quality of the resulting semantic model.

4.5.2 Study 3: Evaluating Model Quality Using Data from the

Integrated Crowdsourcing Approach

Study 2 demonstrated that the whiteboard organization successfully integrated the

secondary task of semantic judgment into the primary task of idea generation in a seamless

fashion. But are these semantic judgments su�cient for building an accurate semantic

model? In this study, we evaluated the accuracy of the integrated semantic modeling

approach by comparing an Integrated idea map (Figure 4.5) generated by the system for

one of the Integrated groups from Study 2, to one generated using a previously-validated

method [Siangliulue et al., 2015a] that relies on outsourced crowd workers. We will refer to

this comparison semantic model as the Outsourced idea map.

To generate the Outsourced idea map, we followed the procedure described in [Siangliulue

et al., 2015a]. Specifically, for the 91 ideas generated by participants in the selected group,

we posted 40 MTurk tasks for workers who had not done the idea generation task to collect

1,000 responses about similarity relationship between ideas. Each worker completed a series
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of triplet similarity comparison tasks: “is idea A more similar to idea B or C?” [Tamuz et al.,

2011]. We used an active learning heuristic to sample the questions to ask to maximize

expected information gain per question [Tamuz et al., 2011]. We then used t-Distributed

Stochastic Triplet Embedding (t-STE) [van der Maaten and Weinberger, 2012] to generate

an Outsourced idea map from these responses. Although the Integrated and the Outsourced

idea maps were generated from di�erent forms of human input (spatial arrangements in the

Integrated condition and triplet comparisons in the Outsourced condition), the algorithms

used to aggregate the results (t-SNE [Van Der Maaten, 2014] in the Integrated condition

and t-STE [van der Maaten and Weinberger, 2012] in the Outsourced condition) are both

based on the same mathematical insights and should yield results with closely comparable

characteristics. Thus, the key question at hand is whether collecting implicit semantic

judgments from an integrated secondary task yields data of su�cient coverage and quality to

build a semantic model that is at least as accurate as building a model from explicit semantic

judgments collected from the external workers.

Measures and analysis

To compare the two idea maps, we measured each map against a standard baseline

for comparison, which is a set of pairwise similarity ratings between ideas generated by

independent human judges [Dow et al., 2010]. This similarity rating method yields accurate

assessments of pairwise similarity among ideas and serves as an excellent gold standard. It

is not a scalable mechanism for constructing semantic models in the first place, however,

because the number of pairwise comparisons it requires grows quadratically with the number

of ideas.

To obtain these independent similarity ratings, we posted 66 MTurk tasks to recruit

workers (who have not previously participated in any of our other studies) to rate similarity

of 550 pairs of ideas, randomly sampled across all participants, on a scale from 1 (not at all
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similar) to 7 (very similar). We provided a rubric with example pairs of ideas and their desired

ratings. Each rater assessed 29 pairs of ideas, four of which were examples of pairs of ideas

that we showed in the rubric (so that we could see if they paid attention to the instructions).

Each pair of ideas was rated by at least three raters. We standardized (i.e., converted to

z-scores) the ratings for each rater prior to aggregating the results. After excluding 2 workers

whose answers to the rubric questions indicated that they were not paying close attention to

the task, we were left with 1,725 similarity ratings.

We then computed the correlations between the human similarity ratings and the pairwise

distances among ideas from each idea map. To test for potential statistical di�erence between

the two correlations, we transformed the correlations into z-scores using Fisher’s r-to-z

transformation.

Results

We found a significant correlation (Spearman correlation, fl = ≠0.4848, p < .0001)

between distances from the Integrated idea map and the human similarity ratings, and a

significant correlation (Spearman correlation, fl = ≠0.3878, p < .0001) between distances

from the Outsourced idea map and the human similarity ratings. Note that map distances

capture di�erences among ideas while the participants were asked to assess similarity, so the

negative correlation coe�cient is the desirable outcome.

After transforming the correlations using Fisher’s r-to-z transformation, we found the

correlation between the Integrated idea map and human ratings to be significantly larger

in magnitude than the correlation between the Outsourced idea map and human ratings

(z = 1.99, p = 0.046). In other words, our proposed approach resulted in an idea map

that better modeled the actual semantic relationships among the idea than the previous

method [Siangliulue et al., 2015a] that relied on mass outsourced human computation tasks.
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4.6 IdeaHound: Creativity Interventions Enabled by

Real-time Semantic Modeling of Generated Ideas

Equipped with the capability to derive a computational model of semantic distances

among contributed ideas, we have built IdeaHound, a system for collaborative ideation at

scale. IdeaHound serves as a step towards our end goal of improved large-scale collaborative

ideation. IdeaHound includes three creativity interventions enabled by the availability of

a semantic model of generated ideas. These interventions are illustrated in Figure 4.6 and

described here:

4.6.1 Diverse Inspirational Examples

When a user requests to see ideas of others, the system consults the global idea map and

selects a set of three ideas that the user has not seen before. The requested ideas appear in

the Others’ ideas pane in the workspace (Figure 4.1B). Two of these ideas are substantially

di�erent according to the idea map (i.e., the distance between the two ideas on the map has

to be greater than a specified threshold). The third idea is selected randomly from a pool of

ideas that has been placed on none or the whiteboards. This procedure balances the need to

collect judgements on newly contributed ideas and the need to present the users with ideas

that are known to be substantially di�erent from each other.

4.6.2 Similar Ideas Lookup

A user can request ideas similar to a particular idea by clicking on a request for similar

idea button for that idea (Figure 4.1E). The system then consults the map to locate up to

three ideas that are close to that idea (i.e., the distances between the ideas and the query

idea do not exceed a specified threshold). The set of selected similar ideas will appear next
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to the query idea on the whiteboard (as in Figure 4.6b).

4.6.3 Visualization of the Solution Space

IdeaHound provides users with a visualization of an idea map (Figure 4.1F). The

visualization shows dots on the map, each dot representing an idea. Ideas that are rendered

close to each other are judged to be similar to each other. The system clusters ideas and

shows a short text for the ideas that are centers of clusters to give user a quick overview of

the space without cluttering the display with too many labels. Users can infer how much each

part of the solution space has been explored by looking at the number of ideas in that area.

They can zoom in to get a closer look at a particular region or zoom out to see an overview.

The ideas submitted by the user are rendered in a di�erent color from ideas by others to help

the user see their contributions in context and decide on which direction to pursue next.

4.7 Study 4: Initial Evaluation of IdeaHound

To gauge the e�ectiveness of introduced interventions (and by extension, the usefulness of

the semantic model produced by our integrated crowdsourcing approach), we ran a preliminary

qualitative study to investigate how people use IdeaHound. This study is complementary to

Study 3. While Study 3 verified the accuracy of the semantic model, Study 4 aims to provide

a proof-of-concept demonstration that the semantic model generated with our approach

can in fact support beneficial creativity interventions. The focus of this study is on users’

experience and perception of the creativity interventions supported by the semantic model.

Because we designed the study to simulate the early stages of an ideation process, we disabled

looking up of similar ideas—an intervention that we hypothesized to be particularly useful in

later stages of the ideation process. Thus, the focus of Study 4 is on the Diverse inspirational

examples and Map visualization of ideas in a solution space interventions.
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4.7.1 Participants

We recruited 7 participants (4 female) aged 18 to 32 through a call for participation sent

to Harvard University students’ mailing-lists. Participants were compensated $15 for taking

part in the study.

4.7.2 Task

Participants generated ideas for April Fools pranks for their university. All participants

worked as part of the same team. That is, they could see each others’ ideas on IdeaHound.

4.7.3 Procedure

Each participant was given a link to access their workspace for the prank ideation task

on IdeaHound. They then used IdeaHound to generate prank ideas in two 10-minute

sessions at their own pace over the course of two days before the scheduled time for their

individual in-person interviews. During the interview session, participants generated a few

more ideas while thinking aloud for 5–10 minutes. They then filled out a short survey on

their experience, and talked with the researcher about their experience and creative process.

The entire interview session lasted about 30 minutes.

4.7.4 Results

Participants generated 115 ideas. On average, participants found the system somewhat

helpful in helping them find inspirations from ideas of others (M=4.71, SD=1.74; 1 = not

helpful and 7 = very helpful) and come up with ideas (M=4.57, SD=1.99; 1 = not helpful

and 7 = very helpful).
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Organizing ideas on the whiteboard

Six of the seven participants used the whiteboard to organize ideas. In the survey, five

participants reported that they found the virtual whiteboard to be the most useful aspect

of the system. Although the degrees of idea organization varied, participants who did not

organize ideas as much reported that they would have organized ideas more if they had been

more invested in the task and had had more time.

Participants reported organizing ideas on the whiteboard as a way to “construct [their]

mind map” [P2] and establish landmarks to come back to later [P4]. Organizing ideas on

whiteboard helped them see relationships between ideas (n=4), detect patterns of emerging

ideas (n=4), and to kill time while thinking about new ideas (n=2). One participant [P1]

reported that they did not use the whiteboard to organize ideas because looking at others’

ideas or his old ideas distracted him.

Getting inspired by seeing diverse ideas sampled from the computational model

Most participants found seeing ideas of others helpful in their idea generation process.

They reported building on the ideas of others and they liked to “look at others’ ideas for

inspiration” [P3]. P2 commented that seeing ideas of others was especially useful when he

ran out of ideas. None of the participants found provided ideas of others repetitive.

However, not everyone found seeing other people’s ideas helpful. One participant [P1] did

not use the example request features because he likes to start generating ideas from a “blank

slate” without external influences.

Reading the idea map visualization

Participants had mixed reactions to the idea map visualization. Participants used the

idea map visualization to get a quick overview of ideas submitted by others (n=5), to explore

many di�erent alternatives proposed by others (n=2), and to kill time while thinking about
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new ideas (n=4). They also used the idea map visualization to detect patterns of the solution

space [P1] and discover underexplored part of the solution space for both individual [P2,

P4, P5]. P2 commented that he tried to “look for space where his ideas are not located”.

Similarly, P4 and P5 stated that they tend to look at the area of the map with few ideas.

However, participants also pointed out limitations of the current version of the idea

map visualization. Participants sometimes had a hard time seeing the connections between

ideas that were placed close to each other on the map and expressed interest in getting an

explanation of the relationships between ideas. They also mentioned that it was tricky to

select the ideas that were not centers of the clusters because the size of the dots and they

wished the idea map visualization would allow them to open the detail windows for more

than one idea at a time.

4.8 Discussion

4.8.1 Integrating Idea Generation and Organization Into a Single

Activity

Results of Study 1 demonstrated that members of volunteer communities may not always

be motivated to perform work that is necessary for the good of the community, but which is

perceived as tedious and as detracting from the primary interest of the community. In our

case, people who were intrinsically interested in contributing novel ideas were not motivated

to evaluate ideas generated by others. We have thus created an alternative interface for idea

generation, one that seamlessly integrated evaluation of ideas with the primary task of idea

generation.

The results from Studies 2 and 3 show that our integrated approach can model semantic

relationships between ideas more accurately than a previously validated crowdsourced ap-
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proach [Siangliulue et al., 2015a] with minimal impact on users’ ideation experience. Although

participants initially reported exerting higher mental e�ort with the Integrated system than

with the conventional Single-task system, as the participants acclimated to the novel interface

over subsequent sessions, the di�erence in mental e�ort nearly disappeared. Additionally,

participants in the Integrated condition did not think that organizing ideas detracted from

their primary task of generating ideas. This is in contrast to the results from Study 1, which

demonstrated that people were not willing to evaluate ideas of others if they perceived it as

an additional task. Consistent with our initial formative studies, the results from Study 4 also

suggested that organizing ideas on the whiteboard helped idea generation by encouraging the

users to make sense of the solution space upfront. A longer study could help verify whether

this is the case.

Meaningfulness of clusters We expected the clusters that users generate to be meaningful

because users organize ideas in IdeaHound only when it is helpful to them. However, during

our formative studies, we observed that not all clusters were of equal quality. In some clusters,

it was unclear why the ideas were grouped together. Introducing an a�ordance for adding

explicit labels to clusters helped reduce this problem. Yet, a small fraction of clusters in

Study 2 were not labeled. When a cluster was unlabeled, it was not always immediately clear

how to derive meaning from it. Excluding all unlabeled clusters from the input to our model

might improve the quality of the models by reducing noise, but it might also decrease the

accuracy of the models by taking away data. Our initial experiments, in which we manually

flagged and removed “noisy” clusters, did not substantially impact the quality of the resulting

models. However, we plan to more systematically investigate mechanisms that can help

identify and filter non-meaningful clusters to further improve the quality of the resulting idea

map.
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Scalability While we only showed the viability our approach in small groups of 6–10 people,

this approach should also be applicable for larger ideation groups. The amount of human

input required by our approach to create a semantic model of the solution space grows linearly

in the number of ideas (as explained in [Siangliulue et al., 2015a]). In our method, because

ideators are also organizers, the amount of input provided to organize ideas grows at the same

rate as the number of ideas, so we expect no computational barriers for our system to scale.

Two of our interventions (diverse inspirational examples and ability to lookup similar ideas)

will not be a�ected negatively by the size of the community, but the idea map visualization

will need to be revised so that it is still readable even if thousands of ideas are present.

4.8.2 Creativity Interventions

One might wonder why the Integrated intervention in Study 2 did not improve creative

performance, as the results of prior work [Siangliulue et al., 2015a] would predict. A closer

inspection of the example sets presented to the participants in the Integrated condition reveals

that they were not significantly more diverse than those in the Single-task condition. The

di�erence may be attributable to the way we sampled the pairs of “diverse” examples from an

idea map: our algorithm first picked an idea at random from the idea map and then searched

for another idea that the model predicted to be maximally dissimilar to the first. But because

mundane ideas are, by definition, substantially more prevalent than unusual ones, the first

randomly selected idea was almost always fairly mundane. Given that the third idea was

chosen at random from among the most recently-generated ideas, this sampling approach

resulted in sets of inspirational ideas that were not substantially di�erent from those picked

entirely at random. A better approach, will be to first randomly select distinct regions on

the idea map (independently of the density of ideas in those regions, thus not privileging

common ideas) and then sample an idea from each of these regions.

The most novel intervention we tested was the idea map visualization, which presented
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a succinct synthesis of the ideas explored by the community so far. Participants in Study

4 found this idea map visualization useful in providing an overview of the solution space.

Some participants [P4, P5] used the visualization to identify underexplored parts of the

solution space and to decide how best to contribute to the group e�ort. Thus, an idea map

visualization can act as a guide to coordinate group ideation e�ort by directing people to

explore di�erent parts of the map to avoid redundant work.

The results of Study 4 also suggest ways to improve the interface of the idea map

visualization. Specifically, participants sometimes did not understand why certain ideas

appeared close to each other on the idea map visualization and would have liked to see

explanations of the semantic relationships implied by the visualization. This finding is likely

explained by the fact that di�erent people appeared to construct di�erent mental models of the

emerging solution space. In Studies 2 and 4 we repeatedly observed that di�erent participants

grouped the same ideas di�erently. This observation is consistent with prior findings [André

et al., 2014]. While this still allowed the algorithm to create a computational model that

captured meaningful semantic relationships among ideas, it suggests that a grouping that

is intuitive to one participant may be surprising to another. In the future, we will leverage

the labels participants attach to the clusters they create. As these labels explicitly reveal

shared semantics among a group of ideas, they may be the right vocabulary with which to

communicate the rationale behind di�erent clusters on the idea map visualization.

4.9 Conclusion

Prior work on creative cognition and creativity support tools demonstrated that having

a computational semantic model of a solution space can enable a number of interventions

that demonstrably improve the number, quality and diversity of ideas people generate. In

large-scale online innovation platforms, where people contribute ideas in the form of short
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text snippets or sketches, no prior feasible mechanism existed for creating such computational

models. We contribute such a mechanism: it combines human judgements with machine

learning to estimate similarity among all ideas contributed by a community. Because people

were not willing to contribute subjective judgements of idea similarity when they perceived

this to be a separate task unrelated to the primary activity of idea generation, we developed a

novel system, called IdeaHound, which seamlessly integrates the secondary task of providing

feedback on semantic relationships among ideas into the primary task of idea generation.

The results of our studies demonstrate the viability of our approach. We found that

people were as willing to use IdeaHound to simultaneously generate and organize ideas

as they were a conventional design that did not require organizing ideas. Furthermore, the

subjective judgements implicitly collected through IdeaHound resulted in a more accurate

computational model of semantic relationships among ideas than an existing approach [?],

which relied on outsourcing the task to an external crowd.

We also show how this computational model can support creative interventions that users

find useful, specifically, providing diverse inspirational examples, and providing an overview

of the solution space in the form of an idea map visualization.
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a)

b)

c)

Figure 4.4: Participants engaged in organizing ideas to varying extent, ranging
from making hardly any clusters (a: P5, G1 ), to moderate organization (b: P6, G1 ),
to extensive organization (c: P31, G3 ).
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Figure 4.5: An idea map of G3 in the Integrated condition, showing clusters of
ideas around di�erent topics. Isolated ideas around the edge are the ideas that either
are di�erent from other ideas or are the ideas that the system does not know much
about yet.
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Computation model

(a) Show a diverse set of 
inspirational ideas
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1. Request ideas similar to 
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2. Receive similar ideas 

(c) Map visualization of 
solution space
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Figure 4.6: Proposed interventions to improve experience and output of idea
generation task as implemented by IdeaHound . The computational model box
represents show the shape of the solution space through idea instances and their
relationships. (a) When a user requests to see ideas of others, the system selects a
set of diverse ideas (instead of sample randomly). (b) A user can ask to see a set
of ideas that are similar to a certain idea. (c ) A user can get a quick overview of
the solution space through an map visualization that shows their ideas and ideas of
others in the solution space.
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Chapter 5

Providing Timely Examples

This chapter has adapted, updated, and rewritten content from a paper at Creativity and

Cognition 2015 [Siangliulue et al., 2015b]. All uses of “we”, “our”, and “us” in this chapter

refer to coauthors of the aforementioned paper.

Emerging online creative communities with thousands of example ideas provide an

important resource for creative production. But how can community members best use these

examples to create new innovations? Recent work has suggested that not just the choice of

examples, but also the timing of their delivery can impact creative outcomes. Building on

existing cognitive theories of creative insight, we hypothesize that people are likely to benefit

from examples when they run out of ideas. We explore two example delivery mechanisms that

test this hypothesis: 1) a system that proactively provides examples when a user appears to

have run out of ideas, and 2) a system that provides examples when a user explicitly requests

them. Our online experiment (N=97) compared these two mechanisms against two baselines:

providing no examples and automatically showing examples at a regular interval. Participants

who requested examples themselves generated ideas that were rated the most novel by external

evaluators. Participants who received ideas automatically when they appeared to be stuck

produced the most ideas. Importantly, participants who received examples at a regular
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interval generated fewer ideas than participants who received no examples, suggesting that

mere access to examples is not su�cient for creative inspiration. These results emphasize the

importance of the timing of example delivery. Insights from this study can inform the design

of collective ideation support systems that help people generate many high quality ideas.

5.1 Motivation and Contributions

Online creative communities—such as Quirky.com, Innocentive.com, 99designs.com—

accumulate thousands of ideas contributed by their members. Because the members can

see and be inspired by each other’s ideas, these collections of example ideas can serve as an

important resource for creative production [Chan et al., 2014]. Ideas generated by others can

help innovators working on similar problems spur new concepts by broadening their notion of

the design space [Herring et al., 2009, Lee et al., 2010, Ritchie et al., 2011] and allowing for

reinterpretation and recombination of ideas [Herring et al., 2009, Yu and Nickerson, 2011,

Marsh et al., 1996]. When viewing ideas for inspiration, innovators should pay attention to

how to select examples [Lee et al., 2010, Siangliulue et al., 2015a, Kumar et al., 2013, Ritchie

et al., 2011], and how to judge their quality [Herring et al., 2009]. This is especially important

because exposure to other ideas is not always inspirational: people often transfer solution

elements from other ideas even when those ideas are known to be of low quality [Chrysikou

and Weisberg, 2005, Jansson and Smith, 1991b]. Recent research shows that even experts

are susceptible to such negative e�ects of exposure to other ideas [Linsey et al., 2010]. Other

ideas can also restrict one’s understanding of the solution space, for example, by limiting

one’s ability to see novel uses for artifacts [German and Barrett, 2005, Maier, 1931].

Consequently, much research attention has been devoted to understanding which properties

of examples are associated with inspirational outcomes. For example, research has considered

how the semantic relevance [Chan et al., 2014, 2011, Dahl and Moreau, 2002], novelty [Chan

83



et al., 2011, Agogué et al., 2013], and diversity [Doboli et al., 2014, Zeng et al., 2011, Baruah

and Paulus, 2011, Siangliulue et al., 2015a] of examples influence ideation. However, one

important question has received less attention: when should innovators look at examples?

A variety of theoretical perspectives suggest that the impact of examples on creative output

not only depends on what examples are shown but also when those examples are delivered.

Cognitive theories of creative ideation suggest that ill-timed examples can disrupt a person’s

train of thought [Nijstad et al., 2002, Nijstad and Stroebe, 2006] and that people benefit most

from examples when they run out of ideas [Seifert et al., 1995, Patalano and Seifert, 1994,

Moss et al., 2007]. Research on flow and interruptions also suggest that automatic example

delivery can be experienced as an as interruption if not timed appropriately [Bailey et al.,

2000, Bailey and Iqbal, 2008, Csikszentmihalyi, 1997], thereby harming creative performance.

However, the literature lacks empirical tests of these hypotheses.

This chapter presents an empirical test on whether people benefit more from examples

when they are prepared to receive them compared to seeing those same examples delivered at

fixed intervals. We conducted an online ideation experiment to test two “prepared” conditions—

an On-demand condition, in which participants determined when to see examples, and an

On-idle condition, in which participants were automatically presented with new examples

when they had been idle for a period of time. We compared these conditions against two

baselines: a condition where no examples were provided (None) and a condition where the

examples were provided at a regular interval (On-interval). The baseline conditions let us

distinguish the e�ect of access to examples per se from the e�ect of timing of the delivery of

examples.

Our results show that both prepared conditions outperform the baseline conditions, but

in di�erent ways. Participants who received examples on demand produced ideas that were

deemed significantly more novel by evaluators compared to participants who did not receive

any examples and to participants who received examples when idle. Meanwhile, participants
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Figure 5.1: Screenshot of the ideation interface. Participants typed their ideas in
the text box. After they submitted an idea, it appeared on the pane on the left. For
those in the On-demand, On-idle and On-interval condition, examples were shown in
the example grid above the idea entry box. The most recently received examples were
shown in a big black box while earlier examples were in a gray box. The “Inspire me”
button at the bottom was visible only to participants in the On-demand condition.

who received examples automatically whenever they were idle produced a larger quantity of

ideas than participants in other conditions, with no significant di�erence in novelty compared

to ideas generated by participants in either of the baseline conditions. Finally, a follow-up

content analysis of the participants’ ideas showed that participants who received examples

on demand used examples more (i.e., borrowed/adapted more solution elements) compared

to participants who received examples when idle. These results confirm that the timing of

example delivery can determine the impact of examples on creative output. From a system

designer’s perspective, our results suggest that, instead of giving people examples in an ad

hoc way, the examples should be presented at the right moment when the user is ready to

make use of those examples.
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5.2 Timing of Example Delivery

We explore two mechanisms for delivering examples to innovators when they are prepared

to receive them. The first mechanism is to provide examples when people explicitly request

them (the On-demand condition). This approach guarantees that the examples will be

provided when people are receptive to new ideas [Friedman et al., 2003, Seifert et al., 1995,

Patalano and Seifert, 1994, Moss et al., 2007]. However, people might choose suboptimal

strategies for requesting examples (e.g., spending too much time looking at inspiration). People

might also not be aware that they are stuck in (or biased by) old patterns of thinking [Marsh

et al., 1997, BilaliÊ et al., 2008, Ward, 1994] and consequently fail to request examples at an

opportune time.

The second mechanism automatically provides the examples when people appear to be

stuck (the On-idle condition). We used a simple timeout mechanism: when no activity was

detected in the interface for a fixed period of time, the system automatically provided a new

set of examples of ideas generated by others. Prior research provides little guidance on how

idle time during ideation relates to being in a “stuck” state. Therefore, we conducted a pilot

study where we observed three people generating ideas in person. We looked at big time

gaps between bursts of successive idea generation. Interviews with participants revealed that

during these time gaps, they ran out of ideas on one thread and then started a new train of

thought. We observed that these gaps tended to be approximately 30 seconds long. Thus,

we decided on a fixed idle interval of 30 seconds for the On-idle condition. Analyses of time

gaps before example requests in the On-demand condition of our main experiment provide

further support for this choice of idle interval.
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5.3 Experiment

5.3.1 Participants

We recruited 120 participants from Amazon Mechanical Turk1 (MTurk), an online micro-

labor market. Three participants did not complete the experiment and were excluded from

our analysis.

We limited recruitment to workers who resided in the U.S. and who had completed at

least 1,000 HITs with greater than 95% approval rate (to reduce noise from less skilled or

motivated workers). Participants were paid $2.50 for their participation.

5.3.2 Task and Procedure

Each participant completed two idea generation tasks. In the first task, they had 3

minutes to generate as many alternative uses for rubber bands as possible. This was a

warm-up task designed to familiarize participants with the system and with the example

delivery mechanism. We did not include the data from this task in our analysis. In the second

task, participants had 15 minutes to generate product ideas for an imaginary technology—a

touch-sensitive “fabric display” that could render high resolution images and videos on any

fabric through a penny-sized connector. We selected this task because it did not require

extensive expertise to generate ideas, but yet was more similar to realistic design tasks than

toy problems (e.g., alternative uses for a rubber band).

At the beginning of the experiment, each participant was randomly assigned to one of the

four conditions:

• On-demand: Participants could request a new set of three examples whenever they

wanted until they saw all available examples.

1http://www.mturk.com
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• On-idle: Participants were automatically presented with a new set of three examples

when they stopped typing for 30 seconds.

• On-interval: Participants saw a new set of three examples at the beginning of the task

and on regular intervals afterward (every minute for the alternative uses task and every

three minutes for the product ideas task).

• None: Participants saw no examples while generating ideas.

When new examples appeared, they appeared in a set of three and were shown prominently

at the top of the example grid until another set of examples came. Older examples were

available throughout the idea generation session, but they were less visually prominent

(Figure 5.1). Before each idea generation session, all participants were informed about how

and when they would have an access to a new set of examples. After finishing the second

task, participants filled out a survey on their demographic information and their experience

during the last idea generation session.

5.3.3 Examples

There were 9 examples available for the alternative uses task and 15 examples for the

product ideas task. Examples for the alternative uses task were obtained through an Internet

search. Examples for the product ideas task were obtained from a pilot round of idea

generation with 12 MTurk workers generating ideas for 15 minutes each. We selected

examples as follows. A trained coder (an author) evaluated the 71 potential examples for the

alternative uses task and the 60 ideas collected in a pilot study of the product idea tasks. The

product ideas were coded with thematic tags like “advertising” and “camouflage.” We also

assessed the overall quality of each idea (judging both novelty and value). We assembled sets

of three ideas that comprised both high quality and diverse theme, as both example quality

and diversity have been shown to improve ideation performance [Paulus and Dzindolet, 1993,
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Leggett Dugosh and Paulus, 2005, Nijstad et al., 2002, Siangliulue et al., 2015a].

5.3.4 Dependent Measures And Analysis

We conducted a between-subjects study with timing of example delivery (None, On-

demand, On-idle and On-interval) as the sole factor.

We collected three performance measures:

• Number of nonredundant generated ideas. Six redundant ideas were removed by me. A

sample (249 raw ideas by 29 participants) was also evaluated for redundancy by the

second author of the original paper, and the reliability was high, ICC(2,2) = 0.83.

• Novelty of ideas as assessed by other MTurk workers (who were not participants in the

ideation study). Previous work has also used MTurk workers to evaluate creativity of

ideas (e.g., [Yu and Nickerson, 2011]).

• Value of ideas as assessed by other MTurk workers. This measure maps onto the

dimensions of appropriateness (quality) and feasibility typically used in prior studies of

creativity.

To evaluate Novelty and Value, each MTurk judge rated a random sample of 25–30 ideas.

The evaluators were asked to read all ideas before rating them on 2 criteria, novelty and

value, each on a 7-point likert scale. For novelty, we asked them to “consider how novel,

original or surprising the idea is” (1–Not novel; 7–Very novel). For value, we asked them

to “consider how useful the product idea is and how practical the idea sounds assuming the

’fabric display’ technology is real” (1–Not valuable; 7—Very valuable).

Each of our evaluators rated a di�erent subset of artifacts so calculating the agreement

between evaluators is not feasible. However, we have evidence from a prior reliability study

that this rating approach yields satisfactory reliability. Using three di�erent types of creative

artifacts, we measured how reliability improved as we increased the number of MTurk workers
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assessing creativity of any one idea. We found that a panel of three raters achieved inter-panel

intraclass correlation coe�cient (ICC) of 0.432. Most (98.6%) of our ideas in this study were

evaluated by at least three evaluators.

To address potential misalignments in absolute means and variances in scores between

evaluators, we first normalized each evaluator’s scores into z-scores. We then averaged the

normalized (z-)scores for each idea across evaluators. A 0 z-score meant that an idea was

rated average, negative z-score means that the idea was rated below average on that criterion.

To illustrate, here are examples of ideas with low novelty (z-)scores:

• “material for a hat” (-1.88)

• “games” (-1.87)

While these are ideas with high novelty scores:

• “Curtains that make it look like people are home when they are way. as part of a security

system” (1.78)

• “Neckties - If they spill something on it at lunch, they can change the color so it blends

in and don’t have to worry about anyone noticing the stain.” (1.28)

Here are examples of ideas with low value scores:

• “A wearable table. On long sleeved clothes.” (-1.83)

• “A color changing bra that displays your favorite apps.” (-1.60)

While these are ideas with high value scores:

• “Use as a stealth device for soldiers to get behind enemy lines.” (1.73)

• “Provide to underfunded schools to replace their expensive projectors in classrooms.”

(1.44)
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Once they finished generating ideas, participants in the On-demand condition answered

survey questions about when and why they requested examples (Table 5.1).

We also recorded timestamps when ideas got submitted and when participants saw a new

set of examples. Using these timestamps, we looked at how much time passed after the latest

idea submission before participants requested new examples.

5.3.5 Adjustments to the Data

There were originally 25 participants in the None condition, 26 participants in the

On-demand condition, 31 participants in the On-idle condition and 35 participants in the

On-interval condition. Our random assignment mechanism did not ensure balanced numbers

across conditions because some MTurk workers abandoned the tasks when the conditions

were already assigned, hindering accurate counting of participants in di�erent conditions.

We filtered out the participants who either never requested examples or requested examples

only once because these participants might not have understood that they could request

examples or keep requesting examples more than once. This excluded 7 out of 26 participants

from the On-demand condition. Because evaluating ideas is costly and the numbers of

participants were unbalanced, we further randomly sub-sampled participants in the On-idle

and the On-interval conditions so that similar numbers of participants from each condition

would be used in the final analysis.

We ended up with 97 participants: 25 in the None condition, 19 participants in the

On-demand condition, 28 participants in the On-idle condition, and 25 participants in the

On-interval condition. These participants (along with their 1,149 ideas) constitute the final

sample for our analysis.
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5.4 Results

5.4.1 Providing examples at idle time led to more ideas

We observed a significant main e�ect of timing of example delivery on the number of ideas

generated by participants (F(3,93)=3.26, p = 0.0249). On Average, participants in the On-idle

condition generated the most ideas (M=13.8), followed by participants in the On-demand

condition (M=10.94), the None condition (M=10.88) and the On-interval condition (M=8.80)

(Figure 5.2). The pairwise Student’s T comparisons show significant di�erence between

participants in the On-idle condition and the On-interval condition. There was no di�erence

between the other pairs.

Condition
None On-demand On-idle On-interval

Nu
m

be
r o

f g
en

er
at

ed
 id

ea
s

0

5

10

15

10.9 10.9 13.8 8.8

Condition

None On-demand On-idle On-interval
0

5

10

15

Nu
m

be
r o

f g
en

er
at

ed
 id

ea
s

Figure 5.2: Participants in the On-idle condition generated significantly more ideas
than participants in the On-interval condition. Error bars show standard error.
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5.4.2 On-demand example requests led to more novel ideas

We observed a significant main e�ect of timing of example delivery on the average

novelty of ideas (F(3,93)=4.89, p = 0.0034). The pairwise Student’s T comparisons show

that participants in the On-demand condition (M=0.18) generated ideas that were deemed

significantly more novel than those in the None condition (M=-0.18) and those in the On-idle

condition (M=-0.01). The di�erence between the On-demand condition and the On-interval

condition (M=0.05) was not significant (Figure 5.3).

We did not observe any statistically significant di�erences across conditions for the average

value rating of ideas (F(3,93)=1.18, p = 0.32).
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Figure 5.3: The mean novelty z-score for participants in the On-demand condition
is significantly higher than for those in the None and On-idle condition. There is no
statistically significant di�erence across conditions for the value scores. Error bars
show standard error.
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5.5 Follow-Up Analyses

We conducted two sets of follow-up analyses to address questions raised by the main

findings. These analyses focused on understanding why and when participants requested

examples, and exploring hypotheses about why the prepared conditions (i.e., the On-demand

and On-idle conditions) had di�erent impacts on participants’ creative performance.

5.5.1 Why and when did participants request examples?

Table 5.1 summarizes the survey responses of participants in the On-demand condition on

why and when they requested examples. The responses indicate that participants primarily

requested examples when they ran out of ideas. A smaller (but still sizable) proportion of

participants appeared to use an alternative strategy where they looked at examples before

generating ideas.

When did you request examples?
Participants

N (%)
When I ran out of ideas. 15 (78.95%)
Before I started generating my own ideas. 6 (31.58%)
In the middle of coming up with new ideas. 3 (15.79%)
When I got bored. 2 (10.53%)

Table 5.1: When did the On-demand participants request examples? The majority
of participants said in the post-experiment that they requested examples when they
ran out of ideas.

On average, participants requested a new set of examples 31.19 seconds (SD = 44.37s) after

they submitted their latest ideas (excluding example requests that came before participants

submitted their first idea). This average idle time suggests that our choice of 30s delay in the

On-idle condition was reasonable.

However, inspecting these idle time distributions across the session yields a more nuanced

picture (Figure 5.4). First, idle times before requesting examples tend to be shorter earlier in
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a session: idle times for the first and second example requests tended to be shorter than 30s.

Second, there was a considerable amount of variability between participants in terms of idle

times: while the mean idle time is close to 30s, participants sometimes waited more than a

minute before requesting examples.
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Figure 5.4: Boxplot of idle time before example request by order of example set in
session. The mean time before requesting examples was 31.19 seconds. Participants
were idle for shorter amounts of time before requesting first and second example sets
than for third, fourth and fifth sets. Participants’ idle times also varied considerably,
with some participants waiting longer than a minute before requesting examples.

5.5.2 How did participants use examples?

To better understand the observed di�erences between the On-demand and On-idle

conditions, we conducted a content analysis of the examples’ impact on participants’ ideas.

We sampled all ideas that participants generated immediately after an example set was seen

to compare against their corresponding example sets. We also included the most recent prior

idea (generated within 30 seconds or less than the last seen example set) for comparison
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because it was common for participants to generate successive ideas within the same category

or with shared functional features. In some cases, example sets were seen in succession

without any ideas generated in between. In these cases, we considered the impact of the last

set of examples on the next idea. This sampling procedure yielded 145 example-idea cases:

89 in the On-idle condition, and 56 in the On-demand condition. Our goal was to identify

whether and how examples influenced the ideas participants generated.

The content analysis was conducted by an expert panel comprising me and the second

author of the original paper. The panel separately analyzed each example-idea case to identify

whether the idea appeared to be influenced by any of the examples just seen. The prior idea

was included as a comparison point, since features in the idea could have plausibly been

transferred/adapted from a prior idea, rather than from one or more of the examples [Nijstad

and Stroebe, 2006]. We only considered features shared with examples that did not overlap

with those of the prior idea. Specifically, we considered two kinds of example influence,

following cognitive theories about example use [Bearman et al., 2002, Ball et al., 2004]:

1. Transfer of structural features, where the panel agreed that the idea appeared to contain

mechanisms or functions (e.g., interactivity, simulation, tailoring displays to states of

a system, sensing user states) also present in one or more of the preceding examples

(and absent in the prior idea). For example, the idea “Safety warnings from public

institutions i.e. di�erent colored flags on the highway that reflect Amber Alerts or how

safe the roads are (a color co[d]ed system will be in place).” shares the same mechanism

of displaying the state of the systems or environment with “Stu� animals with emotions.

Make stu� animals out of this fabric. They can smile when hugged or make di�erent

facial expressions”.

2. Transfer of surface features, where the panel agreed that the idea appeared to share

application contexts (e.g., use for health/exercise, sports/games, learning/education)
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and basic features (e.g., positioning on clothing/furniture) also present in one or more

preceding examples (and absent in the prior idea). For example, the idea “To have

beating organs on the outside of your clothing” shares the same domain concept—body

organ—with “Attached with a sensor to detect body heat or heart rate, the fabric can

make for clothes that detect if you are stressed out or fatigued. It will display peaceful

images in soothing colors when you are stressed out”.

Structural and surface features were considered separately to examine the possibility that

participants in the On-demand condition were generating more novel ideas by engaging in

far transfer (i.e., transferring structural features but not surface features [Dahl and Moreau,

2002]). The panel also took note of the number of examples that appeared to have influenced

the idea.

The panel was blind to condition throughout the analysis. The panel first identified

a list of features considered to be structural and surface. Then, the panel analyzed each

example-idea case in an iterative manner with discussions progressing until resolution was

reached. Earlier coded cases were reanalyzed in light of insights gained from later cases.

Out of the 145 example-idea cases, only 4 ideas (from 2 participants from the on-idle

condition) were identical (or nearly identical) to the given examples. For example, a participant

generated idea “A flag that changes between various nations.” when they saw an example

“A multinational flag. Instead of having more than di�erent flags for di�erent nations, you

can save space by having one flag that rotate showing flags of various nations.” We further

inspected the ideas of these two participants and found that the copied ideas made up only a

small portion of their generated ideas. The panel did not count structural or surface transfers

from these copied ideas.

Figure 5.5 shows transfer rates for the On-idle and On-demand conditions (averaged

across participants). A simple z-test for a di�erence in proportions yields a significant

coe�cient(z=3.82, p < .001), indicating that transfer was observed in a statistically higher
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proportion of cases in the On-demand condition compared to the On-idle condition. This

data suggest that participants in the On-demand condition used examples more often than

participants in the On-idle condition.
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Figure 5.5: Participants in the On-demand condition used more examples to
generate new ideas than those in the On-idle condition as shown in this figure where
the On-demand participants transferred more features from examples to their ideas
the the On-idle participants.

Analysis by type of feature transfer yielded similar results (see Figure 5.6). Transfer rates

were higher for On-demand cases for both structural (z=2.55, p < .05) and surface features

(z=3.68, p < .001). Importantly, the ratio of structural to surface transfers was similar for

both conditions. These findings suggest that di�erences in novelty between the On-demand

and On-idle conditions may be due to quantitative (i.e., more cases of examples actually

influencing ideation) rather than qualitative di�erences (e.g., more sophisticated transfer) in

how the participants used the examples.
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Figure 5.6: Participants in the On-demand condition transferred both structural
and surface features from examples more often than those in the On-idle condition.

.

5.6 Discussion

Adding to prior work showing the importance of considering what examples to see, our

results demonstrate the importance of carefully considering when to see examples. Giving

participants acces to examples on demand led to the highest ratings for novelty (but did

not boost productivity). Automatically presenting examples to participants whenever they

were idle also benefited ideation, but only for number (and not novelty/value) of ideas. In

contrast, participants who received examples at regular intervals produced the fewest ideas

(even fewer than participants who saw no examples at all). We now unpack these findings in

more detail and draw out their implications for cognitive theories of creativity and the design

of platforms for collaborative inspiration.
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5.6.1 Why were on-demand and on-idle e�ects so di�erent?

Why were there di�erences in the novelty of generated ideas between the On-demand and

the On-idle conditions given that both interventions aimed to o�er examples to people when

they were stuck in a mental rut? One possible explanation may be related to our specific

mechanism for automatically inferring when the person was stuck. Delivering examples when

a person is idle for 30 seconds might be too simple or we might not have picked the right

threshold time to infer the stuck moment. Our follow-up analyses of the idle timing data

from the On-demand condition showed that the average waiting time was approximately 30

seconds, suggesting that, on average, our choice of idle interval was reasonable. Nevertheless,

there was also variability in the wait times, both between participants and within sessions.

While we do not believe the pattern of e�ects of on-idle examples is idiosyncratic to our

choice of idle interval, future work exploring more nuanced idle intervals might yield more

precise estimates of the size of these e�ects.

From a theoretical perspective, a more interesting alternative explanation might be that

awareness is a key component of a prepared mind: that is, to benefit from inspirational

stimuli, being stuck is not enough—you must also know that you are stuck. Theoretically,

our results suggest that theories of creative insight inspiration (such as the Prepared Mind

theory [Seifert et al., 1995, Patalano and Seifert, 1994, Moss et al., 2007]) should pay more

attention to metacognitive factors (e.g., awareness of one’s own cognitive states). Practically,

interventions designed to increase metacognitive awareness (e.g., mindfulness training) may

help people maximize opportunities for inspiration. Future experiments might explore if

on-idle inspiration delivery combined with such interventions could match the benefits of

on-demand example delivery.

Alternatively, perhaps participants in the On-idle condition benefited less from examples

because the examples were delivered while they were still productively accessing knowledge

within a given category, even if they were not typing into the system. Our example sets
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were diverse and would probably have required participants to switch categories in order to

recombine them into new ideas. SIAM theory [Nijstad et al., 2002, Nijstad and Stroebe, 2006]

predicts that switching categories requires e�ort, and can lead to productivity losses. Perhaps

On-idle inspiration delivery could still be beneficial if the examples were “personalized” (e.g.,

coherent extensions of a user’s current solution path). Such examples could activate other

knowledge that is related to currently activated knowledge. Prior work has suggested that

deep exploration within a category is an alternative (and often overlooked) pathway to highly

creative ideas [Nijstad et al., 2010b, Rietzschel et al., 2007a]. Future work could develop

novel mechanisms for real-time semantic analysis of participants’ solution paths, and conduct

experiments to test whether personalized inspiration could further help people benefit from

inspirational examples.

Although participants in the On-idle condition produced ideas that were rated as slightly

less novel than those generated by participants who received examples on demand, they were

the most productive. This result suggests that we can prime people to produce more ideas

by showing them examples when they are idle without sacrificing the novelty or value of

generated ideas. This productivity gain might be explained by the fact that new examples

were presented to them before they realized that they were stuck, allowing them to pursue

a new train of thought sooner instead of wasting time waiting for new ideas. However, the

follow-up analysis suggested that participants in the On-idle condition did not use examples

to guide their ideation as often as the On-demand participants. An alternative explanation

that is more consistent with the data is that the appearance of a new set of examples signaled

to people that their performance was being monitored and thus nudged them to keep on

working. Prior work has shown that people increase their rate of idea generation when

they know their work is being watched or will later be evaluated [Weber and Hertel, 2007,

Michinov and Primois, 2005, Shepherd et al., 1995]. However, there is little evidence that this

increased productivity also leads to higher quality (or more novel) ideas. Indeed, people often
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refrain from exploring “wild ideas” if they know or perceive that they are being evaluated

for their ideas, a phenomenon known as evaluation apprehension [Diehl and Stroebe, 1987,

Cooper et al., 1998]. Future work that explores idea generation systems with automatic

example delivery mechanisms should test this alternative explanation, and carefully consider

participants’ perceptions of automated support when designing such systems.

5.6.2 Did examples really help?

One important question to consider in interpreting the results is whether the examples

really helped. For example, did participants in the on-demand condition merely copy features

from the examples? Our follow-up content analysis suggests that they did indeed use examples

to guide their idea generation to a greater extent than the on-idle participants: does this mean

then that they were not being creative? One thing we can rule out is that participants were

simply copying the examples wholesale. In additional follow-up analyses of ideas generated

in the on-idle and on-demand conditions, participants usually generated ideas that shared

features with examples instead of simply copying them. Even in rare cases when participants

submitted an idea that was almost identical to the examples, subsequent ideas were their

own original ideas. We suspect that submitting ideas very similar to examples helped jolt

their train of thoughts.

However, ruling out wholesale copying still leaves the question of whether ideas generated

by solution transfer can be considered creative. We agree with other authors [Marsh et al.,

1996, Purcell and Gero, 1996] that solution transfer per se does not mean that the resulting

ideas are not creative (or were not produced by a creative process). Cognitive research strongly

suggests that all idea generation is inevitably structured by prior knowledge [Ward, 1994],

and studies of real-world creative behavior underscore the central importance of building

on prior knowledge [Eckert and Stacey, 1998, Herring et al., 2009]. When this structuring

and solution transfer leads to ideas that are novel and valuable, we say that the idea was

102



“inspired by” or “built upon” the example(s) [Marsh et al., 1996, Herring et al., 2009]; in

contrast, when the results are less desirable, we say that the designer was “fixated” by the

examples [Linsey et al., 2010, Purcell and Gero, 1996]. Here, the fact that the on-demand

participants mostly generated more novel ideas (and did not merely copy examples) suggests

the former interpretation of the e�ects of examples is appropriate.

5.6.3 Further insights into the potential harm of examples

Our results also join prior work in highlighting the potential negative e�ects of examples.

Here, we add the insight that at least some of the negative e�ects of examples may be

due to when they are seen. Although participants in the On-interval condition generated

ideas that were no less novel than those in the On-demand condition, they were the least

productive (even less productive than people who saw no examples at all). One potential

explanation—consistent with the SIAM model—might be that the examples were experienced

as interruptions or distractions, rather than inspiration; much prior work has demonstrated

that interruptions are detrimental to performance [Bailey et al., 2000]. Some authors have

also suggested that interruptions and distractions can be especially detrimental when one

is in a state of heightened focus and concentration on a creative task [Csikszentmihalyi,

1997]. While this e�ect might be caused by our choice of time interval, this result does

demonstrate that it is possible to harm productivity with ill-timed example delivery. More

in-depth examination of the e�ect of di�erent length of time interval could shed some light

on whether negative e�ects of fixed interval example delivery stem from poorly selected time

intervals, or whether any fixed interval example delivery is likely to be suboptimal.
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5.7 Conclusion

In this chapter we explored the question of how the impact of examples changes depending

on when they are seen during ideation. We conducted an online experiment exploring two

mechanisms for delivering examples at the right moment: a system that provides examples

upon request and a system that proactively provides examples when a user is idle. Our

results show that people benefit most from examples when they are prepared for it. Showing

examples to people when they have been idle for a period of time helps people come up with

more (but not necessarily better) ideas, while showing examples on-demand helps people come

up with more novel ideas. In contrast, ill-timed example delivery might harm productivity,

leading to fewer ideas.
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Chapter 6

Summary View for Solution Synthesis

This chapter has adapted, updated, and rewritten content from a working menuscript

in collaboration with Joel Chan, Steven P. Dow and Krzysztof Z. Gajos. All uses of “we”,

“our”, and “us” in this chapter refer to coauthors of this work.

While open online innovation platforms promise great benefits from a large number of

ideas in the divergent phase of the creative process, these platforms pose a challenge during

the convergent phase. Once they collect enough ideas, someone has to summarize generated

ideas and synthesize a few solutions to pursue. The task of solution synthesis usually falls to

people who organize ideation challenges, hired experts or representatives of the communities

that use the platforms. We refer to people who synthesize solutions from collected ideas

“synthesizers”. In this phase, the synthesizers develop general knowledge of the ideas (main

categories of ideas and their distribution), identify promising ideas including those rare gems,

and craft solutions from what they learn from submitted ideas. However, the large number

of ideas with di�erent levels of detail and clarity makes these tasks di�cult. Synthesizing

these ideas for a few solutions typically involves looking through all ideas; a long and tiring

process that biases them towards common solutions instead of rare and creative ones. In

this chapter, we propose using a summary view that helps synthesizers learn about main
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Figure 6.1: Screenshot of the synthesis interface. (A) A virtual whiteboard where
seed ideas are positioned in group based on their similarities to one another. Users
can drag an idea around to rearrange the layout. (B) Users can click on an idea to
read the idea’s full description. They can also make note about an idea (shown in
blue boxes on the top of the detail pane) and highlight parts of an idea. (C) When
users hover over an ideas, a tooltip with the idea’s title pops up for a quick read.
(D) Users write their solutions in this pane. They clicked on the add button to start
writing a new solution. Each solution require a title, a description and at least two
seed ideas. Users save a solution by clicking the Save button. The users can edit a
saved solution by clicking on an Edit button. They can also delete a solution.

categories of ideas and spot rare and creative ideas. Our approach uses an idea map, as

described in Chapter 4, to generate idea space and creates a summary view, a visualization

that shows ideas in groups based on their similarities. This summary view (Figure 6.1) also

presents small groups of ideas (rare ideas) as important as common ideas. However, the

summary view might fixate the synthesizers on a single set of categories. We explore this

tradeo� by conducting an experiment asking participants to synthesize solutions from sets

of 87 ideas. Some participants were provided with a summary view manually generated by
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the researchers while some were provided a visualization of randomly positioned ideas. We

found that participants with a summary view processed more rare ideas and integrated more

rare ideas in their solutions but were fixated to the schema suggested by the summary view.

There was no di�erence in the number of synthesized solutions. These results help inform

the design of a future summary view that provides quick access to the general knowledge of

the idea space and rare ideas while mitigating the fixation caused by the summary view.

6.1 Motivation and Contributions

Open innovation process does not end when all ideas are collected. The gathered ideas in

their raw forms, albeit abundant in number, are not immediately usable. Some ideas are not

complete solutions, lead to bad solutions or simply replicate many other ideas. The large

number of ideas also makes it impractical to implement all of them. To extract value from

the collective e�ort, synthesizers—usually experts or main stakeholders—evaluate the ideas,

combine appropriate ideas together and generate a few polished solutions to pursue. We call

this process “solution synthesis” and, for the rest of this chapter, refer to those responsible

for this process as users.

Current solution synthesis involves looking through all ideas, comparing ideas against each

other, evaluating ideas and synthesizing solutions from multiple ideas. This process requires

a lot of time and e�ort from users. For example, Cambridge participatory budgeting 2016’s

idea synthesis took 60 representatives (Budget Delegates) 3 months to synthesize 20 solutions

from 548 raw ideas1. The most time consuming part is understanding all ideas. Users can

save time by comprehending a subset of ideas (e.g., the most popular ones or random ones).

However, depending on the subset they select, they might overlook some promising rare ideas.

With no knowledge of an overview of the idea space, the users have no way of identifying a

1http://pb.cambridgema.gov/pbcycle3
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subset of ideas that allows them to gather important concepts while minimizing the time.

Existing platforms such as OpenIDEO2 and MyStarbucksIdea.com3 have used simple

voting mechanisms to select ideas that are most popular. However, popular ideas do not

always translate to solutions that are considered best by the stakeholders. For example, some

ideas with high votes on OpenIDEO did not become winning ideas. It is therefore more

useful for the synthesizers to get a holistic view of the idea space rather than narrow view on

ideas with high popular votes. More importantly, these mechanisms might overlook rare ideas

that are not seen by many and thus received fewer votes [Xu and Bailey, 2012]. A Budget

Delegate from Cambridge participatory budgeting also told us in an informal interview that

they ignored the popular votes of ideas and had to process all ideas anyway. To e�ectively

synthesize solutions from a large set of ideas, the synthesizers need to be able to make senses

of the emerging solution space and judiciously compare di�erent possible solutions to one

another.

One of the most time-consuming parts of solution synthesis for large-scale collective

ideation is processing all ideas that are mostly mundane and redundant [Klein and Garcia,

2015, Bjelland and Wood, 2008]. In this context, an interpretative summary view that groups

similar ideas together will save a user some time from repeatedly processing similar ideas.

Further, prior work has suggested that a summary view that reveals schema of ideas improves

a user’s sensemaking [Russell et al., 2006, Fisher et al., 2012, Kittur et al., 2014], especially

when the summary matches with the user’s mental representation [Tversky et al., 2006]. The

users can develop better understanding of the emerging solutions from the summary view

and thus make informed decision about which solutions to pursue.

Prior work has explored aiding users in making sense of a large set of information by

2https://openideo.com/

3https://www.starbucks.com/co�eehouse/learn-more/my-starbucks-idea
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providing a summary in di�erent formats. Apolo provides users an interactive summary

view that shows similar items grouped together based on the users’ evolving mental model

but is limited to network data such as paper citations [Chau et al., 2011]. Kittur et al.

[2014] proposes a summary with attributes of items provided by previous users. Idea Spotter

provides a summary of core parts of ideas marked by other users [Convertino et al., 2013].

IdeaGens uses a dashboard with a word cloud visualization of submitted ideas to summarize

evolving solution space to support facilitating synchronous ideation [Chan et al., 2016]. Both

Idea Spotter and IdeaGens did not give information about how ideas are grouped semantically

and were limited to ideas expressed in text. Russell et al. [2006] and Gumienny et al. [2014]

explore summary views that cluster similar items together visually. Grokker2 demonstrated

the benefits of an interactive summary view that allows users to scan news articles quickly

and move the around to reshape semantic clusters to fit their needs [Russell et al., 2006].

Qualitative findings from Gumienny et al. [2014] indicate that seeing how others cluster ideas

and comparing them with one’s own way of clustering can help provide di�erent perspectives.

These summary views however were genereated from inputs from a small group of users and

automated methods instead of a crowd contribution.

Our approach is to leverage already derived idea map representation during idea generation

to create a summary view that presents ideas in groups based on the ideas’ similarities to

one another. An idea map (Chapter 4) already has information about how ideas are related

to each other and we can generate this summary view from an idea map by clustering similar

ideas on the idea map together into groups. This summary view shows users an overview

of main categories of the ideas. It also makes less common ideas as visually prominent as

common ideas (Figure 6.1). The summary view suggests that rare ideas are worth inspecting

as much as common ones and reduces the burden of inspecting a lot of similar ideas from the

users. We therefore hypothesized that the users presented with an automated synthesis would

be more likely to include rare ideas in their solutions than users working with no summary
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view. Further, because inspecting a summary view requires reviewing only a fraction of

the ideas to make sense of each of the groups, we hypothesized that users working with the

summary view would perceive lower task load than users reviewing raw ideas without any

organization imposed on them.

However, there is a trade-o� in this design. The summary view might fixate the users

toward certain schemas or clustering of ideas [Barsalou, 1983, Nijstad and Stroebe, 2006].

Ideas are multi-faceted. There are usually multiple schemas or points of view to organize

information [Barsalou, 1983, Gumienny et al., 2014, Chi et al., 1981]. By getting exposed to a

single schema suggested by the summary view, the users might get fixated on that particular

schema instead of trying to look at the solution space from di�erent points of view. This is

problematic because the users could miss some insights about the ideas that lead to good

solutions.

We conducted an experiment to study this tradeo�. We asked 79 participants to synthesize

solutions from ideas taken from a real ideation challenge. For each task, participants

synthesized as many solutions as they could from 87 ideas using one of the two systems: with

a summary view or with a visualization that positions ideas randomly instead of grouping

them similar ones together. Our study measures how likely the participants would adopt

rare ideas (ideas that have at most 2 ideas that share the same concept) to their solutions

and whether participants with a summary view were fixated on the schema suggested by

the visualization. Our results demonstrate that users with a summary view process and

integrate rare ideas more than those without a summary view but also fixate more on the

groups suggested by the summary view.
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6.2 Experiment

We want to compare experience and behaviors of the users who were provided with a

summary visualization of ideas to the users who were provided with a set of ideas with no

summary view. The goal is to understand the potential trade-o� of providing users with a

summary visualization.

With a summary visualization, users do not have to create the schemas for categories

of ideas by themselves. They would therefore have more time to synthesize new solutions.

Our version of summary visualization also tells the users which ideas are rare or common.

By featuring rare ideas in their own groups in a summary view, the users can identify

these rare ideas easily. However, the summary visualization might fixate the users on the

schema suggested by the summary when there are possibly other schemas that can help with

synthesizing solutions.

Based on these arguments, we thus hypothesize:

H1 : Users with a summary visualization have less task load and synthesize more solutions

than users without it.

H2 : Users with a summary visualization interact more with rare ideas as proposed by the

visulization than users without it.

H3 : Users with a summary visualization are fixated more on the categories suggested by

the visualization than users without it.

6.2.1 Participants

We recruited 85 participants from Amazon Mechanical Turk (MTurk), an online micro-

labor market. We limited recruitment to workers who resided in the U.S. and who had

completed at least 1,000 HITs with greater than 95% approval rate. Participants were paid

$3.75 ($9/hour) for their participation.
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6.2.2 Task

Participants were asked to synthesize as many creative solutions as they could within 15

minutes. They were asked to synthesize the solutions from existing seed ideas that aimed to

increase the number of bone-marrow donors. For each solution, a participant provided a title,

a short description and a list of at least two seed ideas that inspired the solution.

6.2.3 Seed Ideas

We selected 87 seed ideas from 279 ideas submitted to an OpenIDEO’s challenge on

increasing the number of registered bone-marrow donors4. The quality of a summary view

derived from an idea map depends on many factors such as the quantity and quality of

human inputs and parameters of clustering algorithms. For this experiment, we decided to

carefully control the quality of the summary view and grouped similar ideas manually. We

selected seed ideas as follow. We read through all 279 ideas and, after filtering out ideas that

were hard to understand without visual images or external links, clustered ideas into groups.

From these groups, we selected 16 groups that represented most of the solution space without

overlapping one another. We then further removed some ideas from some groups to create

groups with fewer ideas . The list of seed ideas and their corresponded groups can be found

in Appendix B.

We defined a rare idea as an idea that belongs to a group with at most 3 ideas. According

to this threshold, there were 8 rare seed ideas making up 9.1% of all ideas.

4https://challenges.openideo.com/challenge/how-might-we-increase-the-number-of-bone-marrow-donors-
to-help-save-more-lives
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6.2.4 Procedure

Participants first read the description of the task and followed a tutorial that walked

them over the interfaces they used to synthesize solutions. They answered a pre-task question

that evaluated their self-e�cacy in synthesizing solution: “(On a scale of 1 being not at all

confident and 7 being very confident) How confident are you that you can synthesize diverse

and creative solutions from a large number of ideas generated by others?”. Then, they read

the description of the ideation challenge and spent 15 minutes synthesizing the solutions

using the provided synthesis interface (Figure 6.1 or Figure 6.2). During these 15 minutes,

participants wrote solutions based on seed ideas. They could hover over an idea to read its

full title, click on an idea to open a window with its full description, write notes to idea,

highlight text in an idea, and move an idea around the whiteboard. After they finished

synthesizing solutions, participants answered questions about their experience.

At the beginning of the experiment, each participant was randomly assigned to one of the

two conditions:

• Summary: Participants were initally presented with a whiteboard on which ideas were

grouped together based on how similar they are to each other as shown in Figure

Figure 6.1.

• Random: This is the baseline condition. Participants were initially presented with a

whiteboard on which ideas were placed randomly (Figure 6.2).

6.2.5 Measures and Analysis

We conducted a between-subjects study with the two conditions as the sole factor on the

following measures.

• Number of valid solutions. We counted the number of undeleted solutions with a title,

a descrpition and at least two source ideas.
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Figure 6.2: An example of the random intial positions of seed ideas on the white-
board for the Random participants

• Rare idea exploration. We used the ratio of rare ideas over all ideas that participants

hovered and clicked open and the ratio of rare ideas over all unique ideas that are

integrated into valid solutions to measure their exposure to rare ideas.

• Category fixation. We used the ratio of valid solutions that cite seed ideas from more

than one of the 16 groups that were presented in the Summary conditions over all

solutions. The higher the ratio, the more likely participants synthesized ideas from

more than one groups and signifies that participants were less fixated by the suggested

grouping presented in the Summary condition.

We also collected participants’ subjective response (reported on a 7-point Likert scale) to

questions that related to their experience:

• Self-e�cacy We compare the di�erences between pre-task and post-task self-e�cacy in
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synthesizing solutions from a large number of seed ideas.

• Perceived helpfulness of the initial positioning of seed ideas. We asked participants to

rate how helpful the initial positioning of seed ideas help them spot rare ideas and

provide big picture (overview) of the ideas. We also asked how well the positioning

match with their interpretation of the semantic similarities between ideas.

• Perceived task load We used the standard NASA Task Load Index (TLX) questions to

measure workload perceived by the participants.

To reduce the probability of Type I error when performing multiple tests, we applied the

Holm’s sequentially-rejective Bonferroni procedure[Holm, 1979, Sha�er, 1995]. The procedure

was applied separately to participants’ subjective responses and separately to non-subjective

performance measures (number of solutions, rare idea exploration and category fixation).

6.2.6 Adjustments to the data

We filtered out 4 participants who did not submit any valid solutions and 2 participants

who submitted solutions that were not related to the the task.

We ended up with 79 participants: 41 in the Random condition and 38 in the Summary

condition. 29 participants were female; 49 participants were male and 1 participant preferred

not to identify themselves as either.

6.3 Results

We summarize the results for performance measures in Table 6.1 and the results of

participants’ subjective responses in Table 6.2. Table 6.3 synthesizes all results.
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Measure (Hypothesis) Grouped
Mean (SD)

Random
Mean (SD)

Raw
p-value

Adjusted
p-value

Number of valid solutions (H1) 3.26
(2.02)

2.98
(1.54) 0.4774 1.4322

Number of hovered ideas 54.03
(18.25)

55.49
(18.40) 0.7243 1.4486

Number of open ideas 19.29
(12.66)

19.39
(12.70) 0.9719 0.9719

Ratio of hovered rare ideas (H2) 0.0978
(0.0292)

0.0918
(0.0284) 0.3543 1.4172

Ratio of open rare ideas (H2) 0.1491
(0.1163)

0.0824
(0.0913) 0.0057 0.0285 *

Ratio of cited rare ideas (H2) 0.1721
(0.1852)

0.0767
(0.1040) 0.0052 0.0312 *

Ratio of solutions that cite ideas
from di�erent category (H3)

0.40
(0.43)

0.82
(0.29) <.0001 <.0007 *

Table 6.1: Measures of participants’ performance and interactions.

6.3.1 No substantial di�erence in the number of valid solutions

On average, the Summary participants synthesized 3.26 solutions (SD=2.02), while the

Random participants syntehsized 2.98 solutions (SD=1.54). This di�erence is not significant

(F (1, 77) = 0.5097, p = 0.4774). These results provide no support for H1.

6.3.2 No substantial di�erence in the number of hovered and clicked

ideas

The Summary participants hovered, on average, over 54.03 ideas—62.10% of all seed

ideas—(SD=18.25) to read the ideas’ titles. The Random participants hovered over 55.49

ideas—63.78% of all seed ideas—(SD=18.40). There is no significant di�erence in the number

of hovered ideas between the two conditions (F (1, 77) = 0.1253, p = 0.7243).

For deeper processing of ideas, participants could click on an idea to read its full description.

On average, the Summary participants clicked open 19.29 ideas (SD=12.66) while the Random
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participants clicked open 19.39 ideas (SD =12.70). The di�erence of number of open ideas

between conditions is not statistically significant (F (1, 77) = 0.0012, p = 0.9719).

6.3.3 Participants from both conditions hovered over equal ratio

of rare ideas but the Summary participants clicked open

and adopted rare ideas in higher ratio to their solutions

Out of all hovered ideas by the Summary participants, on average 9.78% (SD=2.92) were

rare ideas. This percentage is slightly higher than that of the Random participants with

9.18% (SD=2.84). The di�erence of ratio of rare hovered ideas between the two conditions is

not statistically significant (F (1, 77) = 0.8685, p = 0.3543).

In constrast, out of all open ideas by the Summary participants, on average 14.91%

(SD=11.63) were rare ideas. The percentage is higher than that of the Random participants

with 8.24% (SD=9.13). The di�erence of ratio of rare open ideas between the two conditions

is statistically significant (F (1, 77) = 8.1059, p = 0.0057).

Likewise, out all ideas that the Summary participants cited, on average 17.21% (SD =

18.52) were rare ideas. The percentage is higher than that of the Random participants with

7.67%(SD=10.40). The di�erence of ratio of rare cited ideas between the two conditions is

statistically significant (F (1, 77) = 8.2728, p = 0.0052).

These results provide support for H2.

6.3.4 The Summary participants fixated more on category sug-

gested by the visualization

On average, the ratio of solutions that cite ideas from di�erent groups over all solutions

for participants in the Summary condition is 0.40 (SD=0.43), which is significantly lower

than those of participants in the Random condition (0.82, SD=0.29). The di�erence between
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Measure Questions Grouped
Mean (SD)

Random
Mean (SD)

Raw
p-value

Adjusted
p-value

Di�erence between
pre-task and post-task
self-e�cacy

How confident are you that you can synthesize diverse
and creative solutions from a large number of ideas
generated by others? (Report increase of the post-task
response from the pre-task response)

0.03
(1.91)

0.49
(1.57) 0.2426 1.4556

Perception of helpfulness
of the initial positioning
of seed ideas

Q1: How much of the big picture of ideas you got
from this session?

5.71
(1.18)

5.20
(1.14) 0.0528 0.4224

Q2: How helpful the system was in helping spotting
rare ideas (ideas that have concepts that are shared
by no or few other ideas)?

5.26
(1.64)

4.15
(1.86) 0.0061 0.0549

Q3: How well does the initial positions of ideas on
the whiteboard match with your interpretation of the
semantic similarities between ideas?

5.50
(1.43)

3.51
(1.69) <.0001 <0.001 *

Perceived workload

Q4: How mentally demanding was the task? 5.82
(1.14)

5.54
(1.25) 0.3026 1.513

Q5: How physically demanding was the task? 2.05
(1.54)

2.12
(1.49) 0.8393 0.8393

Q6: How hurried or rushed was the pace of the task? 5.32
(1.56)

4.68
(1.63) 0.0829 0.5803

Q7: How successful were you in accomplishing what
you were asked to do?

4.76
(1.24)

4.88
(1.25) 0.6830 1.366

Q8: How hard did you have to work to accomplish
your level of performance?

5.84
(1.03)

5.66
(1.17) 0.4635 1.854

Q9: How insecure, discouraged, irritated, stressed,
and annoyed were you?

3.42
(1.97)

3.19
(1.66) 0.5820 1.746

Table 6.2: Participants’ subjective responses. The Summary participants found
the initial positioning of ideas matched with their interpretation of the semantic
similarities between ideas significantly more than those in the Random condition.

the two conditions is statistically significant (F (1, 77) = 25.8180, p < .0001). This means

that participants in the Random conditions are more likely to propose solutions that got

inspired by ideas from di�erent groups suggested by the visualization seen by participants in

the Summary condition. These results provide support for H3.

6.3.5 No substantial di�erence in the di�erence between pre-task

and post-task self-e�cacy

On average, the self-e�cacy after the task increased by 0.03 (SD=1.91) for participants

in the Summary and 0.49 (SD=1.57) for participants in the Random condition. There is no

significant di�erence between the two conditions (F (1, 77) = 1.3867, p = 0.2426). See the

adjusted p-value in Table 6.2.
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6.3.6 Perceived helpfulness of the initial positioning of seed ideas

Question Q1 to Q3 in Table 6.2 measured participants’ perceived helpfulness of the

initial positions of seed ideas. We found no significant di�erence in perceived helpfulness

in providing overview of the ideas across conditions. We found no significant di�erent in

perceived helpfulness in spotting rare ideas after applying the Holm’s Bonferroni correction

(adjusted p = 0.0549). However, participands in the Summary condition reported that the

initial layout matched their semantic similarities mental model significantly more than the

Random participants (p < .0001, adjusted p < .001). These results provide partial support to

H2.

6.3.7 No substantial di�erence in perceived task load

Question Q4 to Q9 in Table 6.2 measured the participants’ perceived task load while

synthesizing ideas. We found no significant di�erence of perceived mental demand, physical

demand, temporal demand, performance, e�ort and frustration. These results provide no

support for H1.

6.4 Discussion

6.4.1 Number of synthesized solutions

We initially hypothesized that the Summary participants would synthesize more solutions

than the Random participants. The former did not have to construct the schema of the

solution space from scratch so we had expected the Summary participants to have more time

to focus on synthesizing ideas. However, our results show no di�erences in the number of

synthesized solutions across conditions. Further inspection on the length of written solutions

also show no di�erences across conditions on how much the participants wrote and how many
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Hypothesis Measure Hypothesis
supported

H1 No substantial di�erence in the number of submitted solutions -
No substantial di�erence in perceived task load -

H2 No substantial di�erence in ratio of hovered rare ideas -
The Summary participants inspected higher ratio of rare ideas
than the Random participants Yes

The Summary participants cited higher ratio of rare ideas than
the Random participants Yes

No substantial di�erence in perceived helpfulness in providing
an overview of the ideas -

No substantial di�erence in perceived helpfulness in spotting
rare ideas -

The Summary participants reported the initial idea layout matched
their mental model more than the Random participants Yes

H3 The Summary participants submitted lower ratio of solutions that
cite ideas from di�erent categories Yes

Table 6.3: Summary of performance measures and subjective responses for each
hypothesis

idea sources they cited per solution.

One explanation is that participants in both conditions were equally pressured by the

time limit and had to distribute the time accordingly. This corresponded with the survey

results where participants from both conditions reported that they were equally rushed. We

set the time limit to 15 minutes so that participants felt slightly rushed even though they only

had 87 ideas to explore instead of hundreds. Participants had to make a trade-o� between

exploration, deciding on the solutions to pursue and writing the solutions. An experiment

with longer time limit might reveal a more informative picture of how participants balance

these activities.

6.4.2 Discovering rare ideas with a summary view

The results demonstrated that a summary view that shows ideas grouped semantically

helps users spot rare ideas that they might overlook otherwise. The Summary participants

clicked open rare ideas more than the Random participants even though both initially hovered
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the same ratio of rare ideas. These results suggested that the Random participants were

not aware that an idea was rare when they hovered over it and thus did not click on them

to process them further. By presenting rare ideas in their own clusters, our summary view

makes it easier for users to spot uncommon ideas which can lead to creative solutions.

6.4.3 Fixating on categories suggested by the summary view

We asked participants to cite at least two ideas for each solutions. Citing ideas from

di�erent groups implies that the participants find commonality (semantic similarities) between

the ideas that were not grouped together in the summary view. Our results show that the

users with a summary view synthesized fewer solutions with cross-group ideas as predicted

by prior work on cognitive fixation [Nijstad and Stroebe, 2006, Kohn and Smith, 2011].

Seeing a summary view that shows only one point of view can prevent participants from

synthesizing solutions that could have been derived from an alternative view. For example, a

participant submitted a solution “Mandatory Donation” that proposed making the donation

mandatory for people who are already giving, such as military o�cers and blood donors, but

the participant did not propose a solution with another aspect of the seed ideas in the groups

that proposed demystifying the donation process.

One approach that might mitigate the schema fixation e�ect is to expose users to di�erent

schemas. Instead of showing just only one way to categorize ideas, a summary view can

show multiple ways to group ideas semantically. Building on our approach to infer semantic

relationships in Chapter 5, we can leverage di�erent ways IdeaHound users group ideas to

generate multiple idea maps instead of simply aggregating them to generate a single idea

map. For example, we can apply a machine learning algorithm to identify di�erent types

of users based on how they cluster ideas on the whiteboard and then generate an idea map

for each type [Kairam and Heer, 2016] or derive a latent factor model to learn similarity

functions of ideas for a user population [Yue et al., 2014]. The latter approach also supports
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personalized clustering inferences where the algorithm tries to predict how the users will

cluster ideas based on how they cluster a small subset of ideas. This approach could help

users to gradually develop a schema that fits with their mental models while also o�ering

alternative perspectives.

We also note that fixation on categories might not necessarily be harmful, especially

during the convergent phase of the ideation process. Focusing on a few categories presented

could ease the decision making process and give the synthesizers more time to prototype

and test the solutions they generate. Future work could explore the benefits and setbacks of

category fixation during the convergent phase.

6.5 Conclusion

In this chapter, we explored a summary view interface that helps synthesizers synthesize

solutions from a large set of raw ideas. We presented an experiment that studied the trade-o�s

of the proposed summary view. Our results demonstrated that the summary view helps

users find rare ideas but it fixates users on certain schemas. We discussed this trade-o� and

proposed alternative solutions to defixate the users while still retaining the benefit of the

presented summary view.
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Chapter 7

Conclusion and Future Directions

This dissertation addresses challenges in large-scale collective ideation. It argues that

an intelligent system that understands the emerging solution space of ideas can improve

people’s creative output in both the convergent phase and the divergent phase of ideation.

I support the dissertation’s thesis by presenting empirical studies of creativity enhancing

interventions, introducing a computational model that helps intelligent systems understand

the emerging solution space, and developing a system IdeaHound to demonstrate how an

intelligent system can use the computational model to support idea generation. I summarize

the contributions of this dissertation and discuss future directions in the following sections.

7.1 Contributions

This dissertation makes the following contributions.

• Knowledge about creativity enhancing interventions: I presented findings that

corroborate and complement theories and results from existing creativity research.

My empirical studies were motivated by system interventions that could enhance the

creative output of users. In Chapter 4, I demonstrated that showing a diverse set of
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examples selected from a computational model yields more diverse ideas as predicted by

existing cognitive models and research. In Chapter 5, I provided evidence that people

benefit best from examples when they are prepared to receive them. This result was

predicted by the SIAM model but had not been empirically tested.

• Domain-independent computational model of ideas: Existing large-scale online

ideation platforms lack ways to help contributors to deliberately explore ideas of others

for inspirations. Prior work has suggested that deliberate exploration interactions such

as looking at a set of diverse ideas, looking at a set of similar ideas or getting an

overview of the solution space can improve creative output. To enable such interactions,

I introduced a computational model that encodes similarities between ideas. I also

demonstrated how to derive this model at scale and how to use the model to enable

creativity enhancing interactions during both the divergent phase (Chapter 3 and

Chapter 4) and the convergent phase (Chapter 6) of ideation. The application of such

a model to support creative ideation is a novel and enduring contribution.

• Demonstration of integrated crowdsourcing: I introduced the concept of “inte-

grated crowdsourcing”, an approach that integrates the potentially tedious secondary

task with the more intrinsically-motivated primary task. Unlike traditional micro-task

approach, the integrated crowdsourcing approach requires neither significant extra

human resources nor extrinsic incentives to motivate people to do the micro-tasks.

I applied integrated crowdsourcing to support collective ideation and illustrated the

approach’s e�ectiveness in collecting information to support collective activities in one

domain. The general approach of integrated crowdsourcing I proposed in Chapter 4 can

be extended to gather other information about ideas and be applied to other domains.

Integrated crowdsourcing is especially useful in social computing domains that rely

on intrinsically motivated volunteers due to lack of funding or nature of the desired
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information.

7.2 Future Directions

My dissertation work addresses a subset of the many challenges of collective ideation. In

this section, I enumerate future directions to explore.

7.2.1 Improve the computational models of ideas

Idea map has limitations. The model was designed to be light-weighted to minimize the

work required from humans. The result is a model that has minimal information to help

people navigate the idea space. However, it also limits the kind of creativity enhancing

interventions the model enables. For example, an idea map cannot explain why certain

ideas are similar or di�erent or how to combine multiple ideas together. Future work could

explore a model with more useful information such as category labels or values of important

dimensions of the idea space. The challenge to doing so is identifying ways to extract such

information e�ciently for a large number of ideas.

Another way to extend the impact of the idea map model is to reduce the amount of human

e�ort in computing this model. The approaches that generate an idea map described in this

dissertation rely solely on human judgments because ideas can come in many formats. Still, a

lot of ideas are expressed in text. Advances in Natural Language Processing research have now

enabled e�cient methods to understand short text snippets [Mikolov et al., 2013, Pennington

et al., 2014]. Exploring integrating automated results from such methods is a promising

future direction. For example, an automated method can provide seed information about

relationships between ideas that people could correct or people could provide information

that the automated method falls short [Chang et al., 2016].
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7.2.2 Personalized inspirations

Many factors, such as timing and a person’s cognitive state, determine how example ideas

a�ect their idea generation. The findings from this dissertation work and a follow-up study

in a collaboration with Chan [Chan et al., 2017] point toward the benefits of presenting

personalized examples that would be most helpful to people at a specific point in time. Future

work could explore modeling a user’s cognitive states: whether they are on a roll or stuck

and the most recent topic they have explored. An intelligent system with such a model could

infer the optimal time to present personalized inspirations to an individual.

7.2.3 Coordinate a community e�ort

This dissertation explored creativity enhancing interventions of a single contributor in

both divergent and convergent phases. Coordinating e�orts from multiple contributors could

further improve the performance of the community as a whole. For example, a community can

use an idea map as a guideline to coordinate e�ort of contributors who explore di�erent parts

of the emerging solution space. Some contributors might develop expertise to deeply explore

specific parts of the solution space. When these contributors work together, communities

benefit from both breadth and depth of collective solution space exploration.

For the convergent phase, I envision that synthesizers could work together or with the

rest of the community to synthesize well-thought out and comprehensive solutions. For

example, multiple representatives can exchange their points of view to help each other develop

comprehensive perspectives of the solution space. Other community members can help

organize and filter ideas and solutions in the background while the representatives synthesize

the solutions. An intelligent system can act as a bridge between di�erent contributors and

coordinate their e�ort based on their roles, capabilities, experiences and preferences.
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7.2.4 Collective ideation for complex problems

The summary view proposed in Chapter 6 assumes that ideas do not depend on each other

and are of the same level of granularity. However, many real-life complex problems require

solving interdependent sub-problems and balancing a range of constraints and preferences

that emerge during the ideation process. For example, a mass transportation system that

comprises multiple modes of transportation would require designing and integrating solutions

for complex sub-problems, such as tra�c flow, coordination system and maintenance support.

These sub-problems are linked to each other in complex and mutually dependent ways.

They could benefit from large-scale collective ideation, where many explore and refine the

solutions for sub-problems in parallel. However, most proposed ideas are generated separately.

We could provide contributors with a way to coordinate their e�ort to ensure that most

contributions will eventually lead to successful integrated solutions.

7.3 Collective ideation in the real world

Large creative online platforms could transform the way our society innovates. They

make it possible for anyone to contribute to the problem that they care about, democratize

and increase transparency of important decision-making processes, and promise to jumpstart

innovation process by leveraging the immense diversity of perspectives and experiences of

contributors. Although some might currently view collective ideation as a marketing gimmick,

it has potential to solve real large problems that a�ect a large group of people. We can

turn this potential into reality by addressing the challenges of scaling faced by current open

innovation platforms.

My research addresses some challenges of large-scale collaborative innovation and proposes

technical approaches for a more e�ective collaboration. It is a small step toward supporting

real-world collaborative innovation where many other factors can lead to successful or
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unsuccessful outcomes. My dissertation work contributes to improving the current state of

crowd innovation, so that we can e�ectively harvest people’s collective e�ort to make the

world a better place.
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Appendix A

Birthday Message Ideation Task
Instruction

The figure below shows the instructions we used in the ideation task in Chapter 4.

Figure A.1: Instruction for the task used in the experiment
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Appendix B

Seed Ideas for Solution Synthesis

The list below shows ideas that were used as seed ideas and their corresponded groups for
the experiment in Chapter 6. Participants did not see the labels of the groups. For brevity,
the list only shows the title of the ideas. You can find full description of each idea on the
OpenIDEO website1.

1. Recruit through curiosity about self
(a) The Grand Family Tree

2. Recruit through in-person social events
(a) Swab parties (on the basis of Tupperware parties)
(b) Tributes & Toasts

3. Piggyback from medical-related activities
(a) Check it out at your check up
(b) If you’re at the Dentist with your mouth open anyways

4. Make use of waiting time
(a) Department of Motor Vehicles AND Marrow
(b) I’m bored! Time to sign up

5. Recruit people through their companies
(a) Corporate Swabbing
(b) Get Companies to Push Employee Swabbing as CSR
(c) Sign up bone marrow registry, get extra vacation days!

6. Publicize in public space

1 https://challenges.openideo.com/challenge/how-might-we-increase-the-number-of-bone-marrow-donors-
to-help-save-more-lives/concepting
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(a) Educate while you...well, educate in the restroom.
(b) Flush for Life
(c) Art and Awareness
(d) MythBUSters! - Destroying the Myths in a BIG way

7. Recruit prisoners
(a) Bones for freedom.
(b) can we work with ex-prisoners?
(c) Prisoner Bone Marrow Registry
(d) Save a Life, Earn a Life

8. International registration
(a) Beyond the familiar: Spreading the word Globally
(b) Bone Marrow Without Borders
(c) Go beyond the familiar: make the Campaign really Global
(d) Simplify international donations

9. Ask people who are already giving
(a) Ask and You Shall Receive . . . If You Ask the RIGHT Person
(b) Blood Donors Dummy- Teach them that Marrow matters too!
(c) Military to the bone
(d) Turning Dollar Donors into Marrow Donors
(e) Uncle Sam Wants Your Marrow
(f) We can be heroes

10. Ask for help from celebrities
(a) 15 year old boy + famous singer + story telling = spreading the word
(b) Celebrity Goes Through Donation Process
(c) Cricket Star ads to encourage South Asian donors
(d) Enchantment time with Guy Kawasaki
(e) Fashionable Donors
(f) Got a call from Shaq and said “YES”

11. Launch publicizing campaigns
(a) Nick naming Bone Marrow
(b) This Isn’t Your Mama’s Bone Marrow Donation Process
(c) Bucket List
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(d) Campaign: ‘Super hero’s genes are in your marrow’
(e) Colored bone relays tracked on a website - endless/free campaign
(f) The bone marrow tour!
(g) “It Gets Marrow” - Stories of Bone Marrow Donnors and Recipients

12. Recruit through religion institutes
(a) Assuaging African-American Fears Through Clergy-Based Education
(b) Getting help from the religious community
(c) Give a lifetime for Eid/Diwali!
(d) Places of Worship
(e) Ready Sources
(f) Take a benefit from those times and places bring sympathy to society
(g) Tap into the Influence of Spiritual Leaders

13. Recruit through universities
(a) Bone Marrow donation signup counters in University and College Health centers
(b) Engaging undergraduate students in campaigning for bone marrow donation
(c) match up | one week . 100k cheeks
(d) University-Based Open Innovation Awareness Websites built on a DIY Kit
(e) Utilizing the power of student clubs
(f) Train the Trainers. Go Team!
(g) Bone Marrow Advo Kit: Comprehensive Training Curriculum

14. Inform and recruit through movies or TV shows
(a) Bone Marrow Donation as Reality TV
(b) Dr. Oz appeal
(c) Hollywood for Bone Marrow Donation
(d) Lisa Simpson promotes bone marrow donation
(e) Pop Culture Creates Pop Action
(f) Reality Bites
(g) TV game
(h) The Donation - A Feature Film On Donors and Recipients
(i) Sweeping the Clouds Away

15. Make use of digital social network
(a) 6 Degrees of Bone Marrow Seperation
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(b) a handwritten letter posted on facebook
(c) “Become a Life-Saver” - Social Bone Marrow Network
(d) Connect In: An Online Network to Help Cancer Patients
(e) I “Like” Bone Marrow Donation, Do you?
(f) Instant Karma
(g) Just click ‘Join’. Facebook sign u
(h) Social Medical Network
(i) Meet a Recipient. Save a Life. Tell your story.
(j) Celebrate Hero Anniversaries on Social Media
(k) Virtual Bone Marrow Registration

16. Teaming with companies
(a) Make it a Game
(b) The Q-tip Prize
(c) GOOGLIZE IT
(d) B isn’t just for Becks/beer
(e) Know Your Type
(f) Jones Soda and M&Ms
(g) Q-Tip Partnership
(h) Save a Life and Save Some Gas Money
(i) Cells for stem cells
(j) Credits from health insurance for BM donation
(k) Donor Discounts!
(l) Discount Genotyping with Bone Marrow Registration

(m) Pharamacy Donation
(n) Save a Life & Kill a Bill
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