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Abstract

Complex tasks such as treating patients with complex medical conditions, conducting

research, co-authoring documents and developing software products are typically accomplished

by teams. Teamwork in such settings is often loosely-coupled as team members assume

di�erent responsibilities that match their individual expertise. This decomposition of activities

enables team members to function autonomously and requires team members to be aware of

others’ actions only if these actions interact with their own activities. However, identifying

interactions between collaborators’ activities can be challenging. As a result, team members

are often overwhelmed by too much irrelevant information about others’ activities, or lack

important relevant information, both of which can lead to coordination failures. This thesis

argues that intelligent information sharing methods that identify the information that is

most relevant to each team member can reduce coordination overhead and improve team

performance.

Through a study of teams caring for children with complex medical conditions, this thesis

characterizes the coordination challenges of loosely-coupled teams and formalizes the problem

of information sharing in such teams. The thesis introduces Mutual Influence Potential

Networks, a new representation for modeling collaborative activities. It further defines

MIP-DOI, an algorithm which uses the Mutual Influence Potential Network representation

to identify the most relevant information for each team member.

The thesis also presents the design, implementation and evaluation of a personalized

change awareness mechanism, which uses MIP-DOI to reduce the amount of shared change

information in the context of collaborative writing. The results of an experiment evaluating
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this mechanism show that compared to the currently most prevalent approach of presenting

users with all changes made by their collaborators, the personalized change awareness

mechanism resulted in significantly reduced perceived workload and significantly increased

productivity of team members. Importantly, the personalized change awareness mechanism

did not have any detrimental e�ect on the quality of the work.
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Chapter 1

Introduction

Teamwork is a core human activity, essential to progress in many areas. A vast body of

research in the social sciences, human-computer interaction (HCI) and computer-supported

cooperative work (CSCW) has studied teamwork and developed tools to support teamwork.

These tools and insights have enabled teams to work together more e�ectively in many

settings, but there remain settings in which teams fail to coordinate, and for which technology

does not yet provide adequate support. In particular, highly distributed teams with loosely

coupled activities face significant coordination challenges.

The care of children with complex medical conditions, one of the domains this thesis studies,

is a notable example of such settings. These children require care from a large, diverse set of

caregivers that includes parents and community support organizations and multiple types

of medical professionals. Despite widespread consensus on a need for greater coordination

among providers, care for most of these children remains poorly coordinated [Leape, 2012].

As a result, they have high rates of unmet health needs, suboptimal physical functioning,

and potentially preventable health care crises, and they account for a disproportionate share

of health-system use and costs [Leape, 2012].

To ensure coordination, team members need to be aware of others’ activities if they
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interact with their own activities. For example, in healthcare teams each of the care providers

is responsible for a di�erent aspect of the patient’s treatment, but providers need to know of

others’ activities if they interact with their own activities. For instance, a physical therapist

would need to know about a drug prescribed by the neurologist if it a�ected the mobility of the

patient. Identifying when the activities of team members interact can be particularly di�cult

in loosely-coupled teamwork. Consequently, team members often face one or both of the

following coordination challenges: (1) high coordination overhead as a result of information

overload when too much information is shared, or (2) coordination failure due to lack of

important information when too little information is shared or when relevant information

cannot be found.

This thesis argues that the information shared with a team member about collaborative

activities should be personalized, such that only the subset of information that is most

relevant to that team member will be presented. Such personalized sharing of information

has the potential to improve coordination in distributed loosely-coupled teamwork through

simultaneously (1) lowering coordination overhead by reducing the total amount of change

information each team member needs to review, and (2) improving the chances of coordination

success by ensuring that team members receive the information most relevant to their own

tasks. The thesis of this dissertation is thus that:

Intelligent information sharing mechanisms that identify and share with

team members relevant information about others’ activities can reduce coordi-

nation overhead and improve team performance.

The dissertation presents a formative study of complex healthcare teams which uncov-

ered and characterized new challenges in the coordination of loosely-coupled teamwork. It

presents a new representation and an algorithm that uses this representation to reason about

information sharing in such teamwork. It also presents an implementation of a personalized

change awareness mechanism that uses the information sharing algorithm to share with each
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team member the subset of information deemed most relevant for their own activities. It

presents an evaluation of the personalized change awareness mechanism, demonstrating that

personalized information sharing can reduce team members’ perceived workload and increase

their productivity, without causing any detrimental e�ects to work quality.

1.1 FLECS Teamwork

Healthcare research has shown that e�ective systems of care for patients with complex

chronic conditions require an integrated care plan that addresses patient-centered health goals

and provides context for treatment decisions for all members of the care team [McAllister,

2014, Adams et al., 2014]. To better understand the barriers to forming and using such care

plans, we conducted a study of teams complex care teams. We interviewed and observed

representative team members in the Complex Primary Care Clinic (CPCC ) at Stanford’s

Lucile Packard Children’s Hospital, including parents of children with complex conditions,

primary care providers (PCP), medical specialists, therapists and administrators.

The study revealed five characteristics of complex care that raise significant challenges to

e�ective teamwork:

• Flat-structure of team with consensus-driven plan development.

• Loosely coupled plans of individual team members.

• Extended duration of plans.

• Continual distributed revision of plans.

• Syncopated time scales of di�erent team members.

Taken together, these teamwork characteristics, denoted FLECS, result in a teamwork

that di�ers fundamentally from the teamwork settings addressed by prior work in the social

sciences and computer supported cooperative work (CSCW ). To derive design implications
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for developing systems to support FLECS teamwork, we used SharedPlans (SP) [Grosz

and Kraus, 1996], a computational theory of collaboration which provides a specification of

teamwork general enough to cover such teams. A SharedPlans-based analysis suggested the

following key roles for technology for supporting FLECS teamwork: (1) making the team’s

plan “ever present”, adapting the content and form of its presentation to individual team

members based on their involvement in the plan and context of use; (2) supporting e�cient

information sharing by team members, and (3) enabling team members to easily adapt and

expand parts of the plan, while ensuring their changes do not conflict with others’ activities.

1.2 Mutual Influence Potential Networks: Reasoning

About Information Sharing

One of the key opportunities for technology support of teamwork identified by our study

of complex care teams was supporting e�cient information sharing with team members. We

formally define the problem of Information Sharing in Loosely-Coupled Teamwork (ISLET)

and present new methods for addressing it. To support team coordination, solutions to the

ISLET problem need to identify and share with team members information that is relevant

to their activities under a limited communication budget so as to not overwhelm them with

too much information.

Prior work in multi-agent systems developed algorithms to reason about information

sharing in agent teams [Roth et al., 2006, Amir et al., 2014, Melo et al., 2012, Wu et al., 2011,

Unhelkar and Shah, 2016]. However, these approaches rely on a complete plan knowledge

assumption, which does not hold in many human teamwork settings. For example, members of

the complex health care teams we studied might agree on high-level treatment goals but never

fully specify a long-term plan. The approach presented in this thesis does not rely on the

availability of a complete model of the team’s plan. Instead, it utilizes the extended duration
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of teamwork to learn collaboration patterns from team members’ interactions with each other

and with di�erent tasks. We introduce a new representation, “Mutual Influence Potential

Network” (MIP-Net), to model knowledge about such collaboration patterns. MIP-Nets are

updated over time based on the system’s observations of team member interactions. MIP-

Nets implicitly represent role allocation (i.e., team members’ primary responsibilities) and

dependencies between di�erent team members’ activities. We defined the MIP-DOI algorithm

which uses the MIP-Net structure to reason about information sharing decisions. An empirical

evaluation of this approach using a simulation of collaborative activities demonstrated that

MIP-DOI can identify relevant information to share with team members.

1.3 Personalized Change Awareness: Reducing Infor-

mation Overload

We designed and implemented a personalized change awareness mechanism that uses MIP-

Nets and MIP-DOI to support collaborative writing. Change awareness mechanisms [Tam

and Greenberg, 2006, Dourish and Bellotti, 1992] such as change tracking features and Di�

tools are a prominent approach for supporting coordination in distributed teams. These

mechanisms assist team members in tracking each others’ activities. By enhancing team

members’ knowledge of others’ activities, they provide context for evaluating their own actions

and ensuring they align with the team’s activity as a whole [Dourish and Bellotti, 1992].

While some change awareness mechanisms allow team members to filter the information

presented to them (e.g., to omit styling changes in a document, to show changes made by a

particular collaborator), they do not reason about the relevance of such information to a par-

ticular team member. In contrast, we developed a personalized change awareness mechanism

for supporting collaborative writing that automatically selects the changes (document edits)

to share with each team member using the MIP-DOI algorithm. When an author returns to
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a shared document, the mechanism highlights a subset of edits made by collaborators that

are deemed most relevant to her, thus limiting the amount of information she needs to review

prior to making her own writing contributions.

We conducted an experiment which compared personalized change awareness to two

baselines: a change awareness mechanism that showed all of the changes, and a change

awareness mechanism that showed the same number of changes as the personalized mechanism,

but selected the changes to share at random. Our results showed that both mechanisms

that restricted the number of changes shown, Personalized and Random, led to reduced

participants’ perceived workload and higher productivity compared to the condition in which

all changes were shared, demonstrating the benefits of personalized change awareness with

respect to reducing coordination overhead. They also showed that personalized changes

shared with participants were rated as more helpful than randomly chosen changes, and that

the quality of the team’s documents was higher with the personalized mechanism compared

to the random mechanism, demonstrating the importance of sharing relevant changes.

1.4 GoalKeeper: Supporting Complex Care Teams

Our study of complex care teams revealed several barriers to the implementation of

integrated team-baed care plans, one of which is the lack of appropriate technology support

for managing care plans. While electronic medical records (EMR) have been shown to

facilitate improved coordination within health organizations, they were found ine�ective for

coordinating providers in di�erent organizations and were also found to create information

overload [O’Malley et al., 2010]. They support linear processes rather than dynamic coor-

dination processes and are optimized for billing uses rather than for provider and patient

needs [O’Malley et al., 2010]. We developed GoalKeeper, a system for supporting the creation

and management of team-based care plans. GoalKeeper enables families and their care
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providers to define care goals for a child, specify actions that need to be taken to make

progress toward these goals and track progress toward goals by continuously recording status

updates about the child’s condition.

We conducted a preliminary pilot study of GoalKeeper, in which it was used by two

families to create and track care plans. Study participants found GoalKeeper helpful for

organizing their activities and prompting them to act when they accomplished goals or

when they were not able to make progress. However, the study also revealed challenges in

consistently engaging with GoalKeeper and a negative emotional e�ect on families when they

observed lack of progress toward goals.

1.5 Interactive Teaching Strategies for Student-Teacher

Reinforcement Learning

Agents learning to act in new environments can benefit from the advice of more experienced

agents or from human teachers. In the student-teacher reinforcement learning framework,

an experienced “teacher” agent helps accelerate the “student” agent’s learning by providing

advice on which action to take next [Clouse, 1996, Torrey and Taylor, 2013]. We developed

new interactive teaching strategies for this framework.

In contrast to prior approaches, the teaching strategies we developed involve both the

student and the teacher in the decision-making process. In these jointly-initiated teaching

strategies, the student determines whether to ask for the teacher’s attention, and the teacher,

if asked to pay attention to the student’s state, decides whether to use this opportunity to

give advice, given a limited advice budget. An empirical evaluation demonstrated that the

jointly-initiated teaching strategies reduced the amount of attention required of the teacher

compared to teacher-initiated strategies, while maintaining similar learning gains.
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1.6 Contributions and Thesis Overview

The major contributions of this thesis are as follows:

• Through a study of complex healthcare teams, it characterizes challenges and opportu-

nities for technology support of FLECS teamwork. (Chapter 2)

• It develops a new representation, mutual influence potential networks (MIP-Nets) to

model collaborative activities, and a new algorithm, MIP-DOI, that uses MIP-Nets to

reason about the problem of information sharing in loosely-coupled extended-duration

teamwork. It demonstrates the ability of MIP-DOI to identify relevant information in

a collaborative activity simulation. (Chapter 3)

• It develops a personalized change awareness mechanism for supporting collaborative

writing. This mechanism uses MIP-DOI to limit the amount of change information

that is shared with each team member. It presents an evaluation of this mechanism,

demonstrating the benefits of personalized change awareness to teamwork. (Chapter 4)

• It presents GoalKeeper, a system for supporting the creation and management of care

plans for children with complex condition. It also presents a preliminary study of

GoalKeeper, demonstrating its potential to support families of children with complex

conditions. (Chapter 5)

• It develops interactive teaching strategies for agents in a student-teacher reinforcement

learning framework, which involve both the student and the teacher in the decision

making. It shows that these jointly-initiated teaching strategies reduce the amount of

attention required of the teacher agent without compromising the student’s learning.

(Chapter 6)

Chapter 7 presents conclusions and discussion of future research directions.
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Chapter 2

Coordination Challenges in FLECS

Teamwork

Complex collaborative activities, such as conducting research, developing software products

and treating patients, are often accomplished in a distributed manner, by teams that are

loosely-coupled. This chapter describes a qualitative study of teams caring for children with

complex conditions. Through this study, we identified a set of teamwork characteristics that

make coordination particularly challenging: (1) Flat team structure, (2) Loose-coupling of

activities, (3) Extended duration of the teamwork, (4) Continued revision of plans, and

(5) Syncopated time scales of team members. Taken together, these characteristics yield a

teamwork setting which we refer to as “FLECS” teamwork.

FLECS teamwork di�ers fundamentally from the teamwork settings addressed by prior

work in the social sciences and computer supported cooperative work (CSCW ). Therefore

we analyzed the study finding through the lens of SharedPlans [Grosz and Kraus, 1996], a

computational theory of collaboration which provides a specification of teamwork general

enough to cover such teams. Based on this analysis, we identified mechanisms lacking in

complex care teams and to suggest possible ways technology could provide such mechanisms.
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Specifically, we suggest following key roles for technology for supporting FLECS teamwork:

(1) making the care plan “ever present” to ensure that team members’ individual activities

align with the overarching care goals ; (2) supporting e�cient information sharing such that

team members are not overwhelmed or lack important information, and (3) enabling team

members to easily adapt and expand the plan, while ensuring these changes do not lead to

conflicts.

The chapter is organized as follows: section 2.1 provides background and related work

on care teams; section 2.2 describes the study methodology; section 2.3 describes the study

findings; section 2.4 summarizes the study findings and describes an analysis of these findings

as well as design implications.

2.1 Background: the Care of Children with Complex

Conditions

This section describes the care environment of children with complex conditions and prior

work on care coordination.

2.1.1 Care Teams

Children with complex conditions have multiple chronic, simultaneously occurring medical

problems. Their care is significantly more complex than care for children with a single chronic

disease (e.g., asthma), as it requires expertise from diverse medical specialists and other

care providers whose treatments may interact. Care teams for such children are broad in

scope, including not only physicians (PCPs and medical specialists) but also other types of

healthcare providers (e.g., physical therapists) and people who work with the child in home

and community settings (e.g., health aides, teachers). Henceforth, we refer to all caregivers
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Parents 

PCP 

Physical Therapist 

GI 

Camp counselor 

Health aide 
Teacher 

Speech Therapist 

Neurologist 

Pulmonologist 

Figure 2.1: The complex care environment

who are not family members as providers.

Providers di�er in their expertise, and they address di�erent aspects of a child’s condition.

Their involvement with the child’s care may be continuous or intermittent, long or short

term, as illustrated by the horizontal lines in Figure 2.1. The group of providers may change

significantly over the years, either as a result of personnel changes or because the child’s

condition or a new developmental stage raise di�erent needs.

Patient-centered care, which has been shown to be critical to improved health outcomes [Sia

et al., 2004, Larson and Reid, 2010], requires that patients and families be activated members

of the care team. Thus, parents are special members of a child’s care team. Although family

engagement has been shown to improve health outcomes, this concept is relatively new,

and several barriers to engagement stand in the way of its full implementation, including

low health literacy and confidence of families as well as the organizational culture of the

healthcare system [Carman et al., 2013, Barry and Edgman-Levitan, 2012].

2.1.2 Care Plans

The Chronic Care Model is the dominant blueprint for health-care solutions for adults

and children with complex chronic conditions in the US. It argues that e�ective patient
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care requires a collaborative health-care team, inclusive of an engaged, activated patient

and family, supported by computer systems and with care framed by an integrated care

plan [Coleman et al., 2009]. According to this model, care plans should be organized around

whole-person goals (e.g., school readiness) rather than organ-system goals (e.g., brain, lung).

A report by the Lucile Packard Foundation for Children’s Health (LPFCH) [McAllister,

2014] provides recommendations for the content of care plans and the process of developing

them. It indicates that care plans should include clinical goals (e.g., feeding without a tube),

family goals (e.g., going on a family trip) and “negotiated actions” (i.e., actions the team

agrees upon) towards achieving the goals (e.g., starting occupational therapy, getting walking

support device).

An example of a possible care plan, provided by our clinical collaborators at Stanford, is

shown in Figure 2.2. This care plan is for a made-up patient Alex, a 2 month old diagnosed

with Down Syndrome. Alex has poor muscle tone and a hole in his heart that make it di�cult

for him to gain weight and grow. He is currently being fed through a tube down his nose.

The care plan specifies three overarching goals for the year: (g1) move Alex to oral feeds, (g2)

get Alex into daycare, and (g3) have Alex able to go on a family vacation trip. Figure 2.2

also shows the actions required for achieving these goals and the team members responsible

for each. To ensure that progress is made toward the goals and that the plan is revised when

needed, the team needs to monitor Alex’s status. For example, for goal g1 they need to track

Alex’s vomiting and secretions, ability to tolerate home therapy exercises, and ability to take

the feeding-related medications.

2.1.3 Inpatient and Outpatient Care Settings

When patients need to be hospitalized due to severe acute conditions, their inpatient

care is provided by a hospital-based care team. Children with complex conditions receive

most of their care in outpatient settings. Therefore, our study focused on such settings. The
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𝒈𝟏  Move Alex to oral feeds 

𝒈𝟏𝟏  improve the muscle tone of his mouth 

Parents, PCP, OT, PT, home nurse 

𝒈𝟏𝟐  adjust his formula for weight gain and 

feeding schedule 
Parents, PCP, dietician, gastroenterologist, 
home nurse 

𝒈𝟏𝟑  improve the muscle tone of his mouth 

Parents, PCP, OT, PT, home nurse 

𝒈𝟐  Get Alex into daycare 

𝒈𝟐𝟏  minimize his need for g-tube feeds 

during daycare hours 
Parents, PCP, dietician, home nurse 

𝒈𝟐𝟐  minimize his need for other technology 

(e.g., oxygen)  
Parents, PCP, dietician, home nurse 

𝒈𝟑𝟑  complete paperwork to address medical 

and physical-therapy needs at daycare 
Parents, PCP, OT, PT 

𝒈𝟑  Go on a family trip 

𝒈𝟑𝟏  Arrange portable equipment for a 3-day 

trip 
Parents, PCP, OT 

𝒈𝟑𝟐  Arrange funding and transportation 

Parents, PCP, social worker 

Figure 2.2: Sample Goal-Centered Care Plan.

frequency with which these patients see particular medical providers varies depending on

their conditions. The care team is distributed, and team members interact with the child

and with each other less frequently than in inpatient settings. It is especially for outpatient

periods that care plans need to be e�ectively deployed and care coordination mechanisms

enhanced.

2.1.4 Care Coordination

Coordinated care has been shown to lead to improved health outcomes for children

with complex conditions and can reduce healthcare costs [Fiks et al., 2012]. However,

coordinating care across care teams is hard and care coordination is often not achieved [Leape,

2012]. Studies of medical practices’ use of electronic medical records (EMR) to support

care coordination found that while EMRs facilitate improved coordination within a single

organization, they were ine�ective for coordinating providers in di�erent organizations and

were also found to created information overload [O’Malley et al., 2010, Bates, 2010]. According

to the study, EMRs support linear processes rather than dynamic coordination processes and

are optimized for billing uses rather than for provider and patient needs. In sum, current

EMR systems do not provide mechanisms for supporting the coordination of team-based

plans.

Human-computer interaction research has investigated systems to support patients in
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managing their own care [Klasnja et al., 2010a, Ballegaard et al., 2008], but this work has

focused on the patient alone and has not considered other care team members. The CSCW

community has studied healthcare teams and developed tools for supporting them [Fitzpatrick

and Ellingsen, 2013]. For example, prior work on coordination in inpatient settings has studied

temporal and spatial coordination processes in hospital wards [Bardram, 2000, Bardram

and Hansen, 2010], trauma-room coordination [Sarcevic et al., 2011], coordination of clinical

and non-clinical sta� [Abraham and Reddy, 2008], and collaborative information processes

in care teams [Reddy and Spence, 2008]. In outpatient settings, prior work has studied

coordination in mobile teams (typically of therapists) and developed systems to support the

loosely coupled work of such teams [Pinelle and Gutwin, 2006] and systems for supporting

therapists’ meetings [Kientz et al., 2006]. Our findings go beyond these prior works and show

that teamwork in complex care is significantly more complex than in these previously studied

settings and thus requires new approaches for supporting coordination.

2.2 Research Settings and Methods

To better understand the challenges of care coordination and the barriers to implementing

team-based care plans, we conducted a study over a period of 10 months during 2013–2014

that comprised of observations and semi-structured interviews with parents and providers.

Institutional Review Board approval was obtained. Most of the study was conducted in the

Complex Primary Care Clinic (CPCC ) at Stanford’s Lucile Packard Children’s Hospital,

which operates a special complex care program. Interviews with physical and occupational

therapists and a social worker were done at a nearby complex care clinic that shares many

patients with the CPCC.
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Role N Data Collection
Parents 13 Individual interviews with 4 parents (children ages ranged between

1.5 to 4 years old); focus group with 9 other parents who are also
parent mentors (with children in their teens).

PCP 4 All were interviewed individually. Two of them were also observed
for 2-3 hours.

Specialists 4 Individual interviews with a neurologist, pulmonologist, neonatolo-
gist and a cardiologist.

Therapists 8 3 focus groups with occupational and physical therapists (2–3
therapists in each interview).

Director of family-
centered care

1 Participated in the parent focus group and in a meeting with the
complex care program manager.

Care coordinator 1 Observation of 2 hours and informal conversations during that
time.

Social Worker 1 Individual interview.
Program directors 2 Meeting with complex care program manager and medical director.

Table 2.1: Study participants.

2.2.1 Participants

In the course of the study, we interviewed and observed representatives of di�erent types

of caregivers: parents, parent mentors (who are themselves parents of children with complex

conditions), primary care physicians, medical specialists, therapists, a care coordinator, a

social worker and administrators. Table 2.1 summarizes the participants by type and data

collection methods. All parents we interviewed had children with complex conditions. The

care teams for these children included 10–15 providers. For example, the care team for

one family included a PCP, gastroenterologist (GI), neurologist, ear nose and throat doctor

(ENT), a physical therapist (PT), occupational therapist (OT), speech therapist, and a

school-based therapist. Another child’s care team comprised 15 care providers including

a PCP, cardiologist, liver transplant team, dermatologist, ENT, geneticist, GI, PT, OT,

pulmonologist, and rehab specialist.
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2.2.2 Data Collection

All interviews, focus groups and observations were conducted during visits to the CPCC

in July 2013, November 2013 and March 2014. Notes were taken during interviews, focus

groups and observations. The interviews with specialists and social worker and the focus

groups with therapists were audio-recorded and transcribed.

Participants of the parent-mentors focus group, which lasted 2 hours, were asked to

describe their experiences in managing the care for their children. They were asked to

describe challenges that they face and the tools they use to manage their child’s care and to

brainstorm about tools that would help them better track and manage care.

In a one hour meeting with complex primary care program directors, we asked about care

coordination processes and problems and about the types of support they thought would be

useful for improving the use of care plans.

Individual interviews with parents lasted about an hour each. Parents were asked about

the structure of the care team for their child, the use of care plans and care goals in their

child’s care, the tools they use to manage and track care, the communication among team

members and the challenges they face.

Interviews with PCPs and specialists and focus groups with therapists lasted about

45 minutes each. Interviewees were asked about their patient load, how often they see

their complex patients, their use of plans and goals in care, the ways in which they gather

information, their communication with parents and with other providers and the challenges

they face.

In addition to interviews and observations, we collected relevant documents, including

care plan templates, examples of specific care plans and patient information sheets.
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2.2.3 Data Analysis

Analyses of interview and observation data (transcripts and notes) were done using a�nity

diagramming [Beyer and Holtzblatt, 1999]. We iteratively clustered data into themes (e.g.

“parents’ frustration about lack of communication between providers”, “physicians’ view of

care plans”). We discussed and revised these emerging themes over the course of several

sessions.

2.3 Study Findings

This section presents study findings on complex care teams and their use of care goals

and care plans. The study revealed the complex FLECS nature of the teamwork in which

care teams engage and resulting challenges to implementing long term team-based care plans.

Extended duration and loosely coupled caregiver activities are inherent properties of such

care. The section thus focuses on the main study findings with respect to other characteristics

of FLECS teamwork. It also describes the communication deficiencies that were revealed as

communication is key to teamwork.

2.3.1 Consensus-Driven Plan Development

Team-based care plans require that care teams, including the parents and patients (if

they are old enough), reach consensus on goals for a child. Our findings indicate, to the

contrary, that at present care goals are typically defined separately by individual providers.

Furthermore, their use varies among providers: while for some providers setting and tracking

goals is a regular part of their practice, others set goals only at times of major health events

(e.g., new diagnosis) or do not set goals at all. Conversations between providers and parents

about goals vary greatly depending on the family and the provider. Some families have a

clear idea of goals whereas others do not feel confident about setting goals. Some providers
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discuss goals with parents regularly while others do not discuss goals at all.

Of all providers, occupartional therapists (OT) and physical therapists (PT) are most

accustomed to working with care goals. They have a more standardized process for setting

and tracking them than other providers. Therapists said that they usually set 2 or 3 goals

related to mobility and feeding, which are challenging areas for most infants with complex

conditions. A sample PT goal is that of a child achieving the transition from sit to stand. A

sample OT goal is that of a child no longer needing a feeding tube. Therapists often define

subgoals (i.e., smaller steps) toward achieving a larger goal.

When asked how he works with a family to set goals, one specialist said: “I ask parents

about seizures, skin infections. I ask about quality of life – Is the kid sleeping? Is the parent

sleeping? Have they developed a strategy? I also ask the parents what is their top priority. I

find that single question among the most helpful I ask.” For another specialist, discussions

about goals usually arise when there is a life shortening diagnosis, near the end of life or when

the patient is hospitalized. In these situations she asks the parents “What are [your] goals for

[your] child... How much would you put them through for treating this illness.” They then

decide on a treatment plan depending on the desires of the family.

Many providers discussed the di�culties of setting goals with parents. One therapist said

that some parents have very specific goals such as the child not tripping when walking, while

other parents have very vague goals such as wanting their child “to be better”. A specialist

commented, “di�erent patients have a di�erent idea about goals. Many patients are taken

aback by it... I tend to give them ideas.”

Some of our findings corroborated prior work. For instance, in a study on goal settings

for elderly patients [Schulman-Green et al., 2006], providers said that patients sometimes feel

uncomfortable discussing goals as they expect physicians to tell them what their goals are.

On the other hand, some patients felt that physicians did not have time to discuss goals and

did not engage in such high-level discussions.
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Our findings also reveal substantial new challenges specific to complex care teams. In

particular, the di�erent processes and approaches to goal setting of various providers and the

lack of joint goal setting by the team create significant di�culties for parents: They need

to prioritize goals because “everyone wants to work on everything”, and they also need to

track the various goals. While parents frequently discuss goals with therapists, they said that

with some doctors “goals don’t come up at all” and that they would have liked to discuss the

therapists’ goals with other providers. These challenges are further exacerbated by the fact

that parents have little experience in goal setting: they are often uncomfortable with the

idea itself and when they do finally engage, they have di�culty articulating goals that are

neither too specific nor too vague.

2.3.2 Continual Distributed Revision of Plans

Our study revealed that current care plans are usually individual provider plans, which

are not well integrated into team plans. Parents have di�culties tracking these separate

plans. Given the evolving condition of children with complex conditions, plans often become

obsolete, and replanning is required. According to both parents and providers, however, even

when team plans are implemented, they are rarely consulted or revised.

Furthermore, the nature of care plans varies, with some being simply a list of actions

without any clearly specified connection to goals. For example, one PCP’s care plan included

a list of diagnoses, a high-level assessment of the patient and a list of low-level treatment

actions (e.g., take new medication) and required tests (e.g., conducting a sleep study). This

list was not organized around goals and was not coordinated with the plans of other team

members or developed by the team as a whole. Parents expressed frustration at the use of

such plans: “sometimes the care plan is a set of tests and it is not clear what the plan is

[emphasis ours].”

To implement team-based care plans, “Pediatric Advanced Comprehensive Care Team
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(PACT) chats” are being held for patients in the complex primary care clinic. PACT chats

include “core members” of the care team as identified by the family. They meet together to

discuss care plans for the patient. PACT chats aim to facilitate a setting for the team to

create a joint, centralized planning process. As one specialist reported, however, they are

“totally not scalable” as they require getting all team members together at the same time,

and the meetings themselves take a long time. Therefore, even if the team succeeds in having

an initial PACT chat, it is infeasible to have such in person full team meetings repeatedly.

When a severe acute condition arises and a child transitions to inpatient settings (i.e., is

hospitalized), a “care conference” might be initiated. In care conferences, a large number of

team members meet together in one room to discuss the patient’s condition and decide on

next treatment steps. Care conferences greatly help everyone “get on the same page”, but

they occur rarely, usually only when there is a severe acute condition. They mostly involve

team members from within the hospital and only some outpatient providers participate.

In outpatient settings, replanning is usually done in a distributed manner. Providers

might revise their individual plans when they see a patient, but typically do not coordinate

with other providers when they do so. To address this problem, the complex primary care

clinic has established “status chats” with a smaller number of team members to follow-up on

the patient’s care plan. However, as with PACT chats, these meetings are hard to coordinate

and do not scale well. One specialist described an additional problem with the ongoing

tracking of plans: “One of the issues with the complex care initiative is that the PACT chats

and all the status chats have to be provider initiated, and so if you don’t remember to do it

or there’s no one coordinating it, it’s like where is it going, where do you even look for it?”.

These findings highlight the unique di�culties care teams of children with complex

conditions experience in maintaining a coordinated care plan: While team members frequently

revise their individual plans for addressing a particular aspect of the child’s care, there are

rarely opportunities for team members to discuss their plans together. There are currently
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no e�ective alternative processes or tools to support team members in ensuring that their

distributed activities are coordinated.

2.3.3 Syncopated Time Scales

Providers di�er in their frequency and level of involvement in the plan. PCPs see their

patients 3 to 4 times a year, and possibly more during times of acute conditions. Specialists

typically see patients 2 to 3 times a year (and when an acute condition occurs). While

PCPs are concerned with the overall status of the child, specialists are more focused on

monitoring and treating the one facet of a child’s condition related to their particular speciality.

Therapists meet with patients one to three times a week and are thus more involved than

physicians in the delivery of day-to-day care.

As a result of their di�erent timescales and level of involvement in a child’s care, providers

require di�erent information. Parents reported synthesizing and shaping information di�er-

ently depending on the provider with whom they are talking. For instance, they might share

information related to seizures with the neurologist and information related to feeding with

the GI, shaping their choices by what they think is most closely related to that provider’s

aspect of care. In addition, even when asked similar questions by providers, parents felt that

di�erent answers were expected. As one parent said, “a doctor asks if she is walking and

expects a yes/no answer; a PT will ask how she is walking and how much progress she has

made.” Another parent said that the medical team might monitor the child’s progress through

swallow studies that are typically done only 1 to 3 times a year, while the occupational

therapists are much more involved in day-to-day feeding therapies, and that there isn’t much

conversation between the two.

Providers also di�er in the timelines they set for goals and the ways they track progress

towards those goals. Therapists set 6–12 month goals, monitor progress and explicitly

document goals and progress toward them in their reports of an evaluation that typically
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occurs every 6 months. Specialists, on the other hand, said that they usually do not set

goal timelines. One specialist said he does not do so because of the uncertainty about the

development of the child’s condition: “The timeline is the next visit [...] So much of it is

beyond their [parents’] control.” As for tracking goals, some specialists said they revisit goals

at each clinic visit (typically every 4 or 6 months). Another said, “I like seeing my patients

quarterly, because then at the sick visits you can deal with just the illness, but when you

have a visit where there’s nothing going on and they’re happy, then you have an opportunity

to talk about what the goals are [...] being honest about things.”

The di�erent timescales in which providers operate and their di�erent involvement in

care pose additional challenges for care coordination. Each of the providers has partial

information about the child’s status and obtains it at di�erent times. Therefore, it is hard to

establish a complete picture of the child’s condition at any moment. When providers obtain

new information, they need to decide whether that information should be shared with other

providers without having complete knowledge of others’ plans. In practice, providers reported

that such communication is often deficient.

2.3.4 Communication Among the Care Team

We also investigated the ways providers and parents communicate and asked them how

they determined the information to communicate, because these processes are essential to

e�ective team-based care plan formation and use.

Medical providers often belong to di�erent organizations and frequently are unable to

access each others’ medical notes. Hence, they seldom have the full picture of a child’s

condition. Team members with access to others’ records are often overwhelmed by the

massive amount of information confronting them. They reported that they often miss

important information. One specialist said “I use my own savvy to figure out what happened

to the patient since I saw them [...] It’s all manual. If something big happened I’ll get a
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phone call.”

Providers described communication with other providers as slow and deficient. Most

communication between providers is asynchronous, done through email, letters and notes.

Providers who are within the hospital system can copy other providers on notes they enter

into the EMR. However, one specialist remarked that “figuring out exactly what [the other

provider] want[s] you to read requires that you read [their] whole [individual treatment] plan”,

and that there is lack of feedback when sending information: “You don’t know if [other

providers] read it... I get stu� all the time, too, and I don’t always review my chart in a

timely fashion.”

As a result of these communication problems, parents find themselves responsible for

transmitting information between providers, and are frustrated by this situation: “We need to

relay information back and forth... We wanted [the providers] to be able to talk to each other

in one room.” One specialist noted a problem that arises when families transmit information

between providers: “The family is telling me about what has happened [since the last visit]

and they say ‘this happened and we went to the doctor’, and I really don’t know what the

doctor thought.” Parents are often asked about meetings with other providers but do not

remember all of the details from such past meetings. In addition, when new providers join

the team or when parents call after-hours, they need to re-explain their child’s condition.

Parents also expressed frustration at providers not sharing information with them more

proactively. According to parents, communication during transitions from inpatient to

outpatient settings is crucial, but often lacking. Parents described transition times as

especially stressful and said that they would like to have more information to prepare them

and make them more confident about taking care of the child themselves.

Our findings corroborate many prior findings, including the ine�ectiveness of EMRs [O’Malley

et al., 2010], lack of communication among providers [Stille et al., 2006], and families’ frus-

tration with this lack [Strickland et al., 2004]. Our study expands these results, showing
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that EMRs are even less e�ective when providers from multiple organizations are involved,

and that identifying relevant information is more di�cult for providers in these settings. It

also uncovered new problems, for instance, the di�culty of establishing common knowledge

when communication is asynchronous and there are no means of determining whether other

providers have seen information sent to them. It further identified a crucial communication

gap at times of care transitions.

2.4 Discussion

Our study reveals many challenges confronting care teams for children with complex

conditions. In this section, we first reflect on these findings in the context of a report on

the use of care plans in complex care [McAllister, 2014], showing that many aspirations of

the healthcare community are currently not realized. Next, we discuss the unique teamwork

challenges for care teams for children with complex conditions that make the implementation

of care plans especially hard in this setting. Finally, we discuss implications for design of

technology support for care teams.

2.4.1 Care Plans: As They Are, As They Should Be

In support of the drive toward the implementation of integrated, team care plans for

children with complex conditions, and to encourage their adoption and use, the Lucile

Packard Foundation for children’s healthcare (LPFCH) published a comprehensive report

entitled “Achieving a Shared Plan of Care with Children and Youth with Special Health Care

Needs”. In their report, they outlined the “10 Principles for Successful Use of a Shared Plan

of Care” [McAllister, 2014]. These principles, listed in the left column of Table 2.2, were

identified by a panel of physicians, care coordinators and family advocates experienced in

complex care and were informed by prior research on complex care coordination. This section
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reflects on our study findings in light of the aspirations for the use of care plans described in

the LPFCH report.

Our findings reveal that many of the principles for successful implementation of care plans

are currently not met, as summarized in the right column of Table 2.2, and that achieving

them will require overcoming several barriers. These barriers cluster into four areas, which

we order according to their focus on plans per se.

First, successful care plan implementation requires an integrated care plan with shared

goals, implemented as a shared document that is monitored and revised over time (Principles

6, 7 and 9). Our findings reveal, however, that in current practice there are typically multiple

individual plans formed by di�erent providers, rather than a single shared team plan, and

that providers are typically unaware of each other’s plans. Even when team-based care plans

are successfully implemented, they are rarely monitored or updated, despite the uncertainty

in the outcomes of the initial plan and the inevitable, often unexpected, changes in the child’s

condition.

Second, successful use of care plans requires that communication among team members

be clear, frequent and timely (Principle 2), as does care coordination in general. Our findings

highlight many di�culties in achieving the requisite levels of communication and information

sharing, including information overload, slow and unreliable communication channels and

unclear communication between providers and parents. They show that providers cannot

easily access or find all relevant information and thus do not have a full understanding of the

child (Principles 3 and 5).

Third, care plans need to address the challenges of parent and family engagement and

their integration into provision of care (Principle 1). Prior research on patient-centered

care has found that patients and families are often not su�ciently engaged as a result of

language barriers, cultural issues, the emotionally overwhelming situation, or providers’ lack

of experience with engaging parents [Carman et al., 2013, Barry and Edgman-Levitan, 2012].
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Our study reveals similar barriers (not reported here as they largely replicate prior findings).

Fourth, care plans need to support transitions in care (Principle 8). In our interviews,

both providers and parents described transition situations as very stressful, and families

expressed the desire to be given more information and to be better prepared so they would

feel more confident about meeting their new responsibilities.

2.4.2 Barriers to E�ective Care Plan Implementation

Our study exposed the complex nature of teamwork in complex care, revealing five

characteristics that, in combination, distinguish it fundamentally from other teamwork

settings. In summary, these are,

• Flat-structure, consensus driven plan development: goal-setting requires consensus of

multiple caregivers, with no single decision-maker “in charge”.

• Loosely coupled: the activities of care providers are largely decoupled, but identifying

interactions between their activities is crucial for preventing conflicts.

• Extended duration: care plans extend over months to years, during which a child’s

condition evolves.

• Continual distributed revision: care teams must create and frequently update well-

coordinated care plans while rarely (if ever) meeting as a whole.

• Syncopated time scales: the timescales on which care providers interact with the child

vary greatly from several times a week to once or twice a year.

These FLECS teamwork characteristics make the implementation of care plans in these

settings particularly challenging. The extended duration of plans combined with uncertainty

in outcomes of treatments and changes in the child’s condition result in a need for ongoing

revision of the goals and plans. The disparate timescales and involvement in the care plan
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pose di�culties for providers in keeping track of the child’s current condition and plan

status, and in coordinating their updated plans with others. Despite their di�erent level of

involvement in care, it is crucial that all team members reach consensus about the high-level

care goals, as these goals guide their individual treatment plans. It is also important for

them to be aware of changes in others’ plans that might a�ect their own plans and to avoid

undesired interactions when updating their plans. These challenges are further exacerbated

by the fact that, for most providers, participating on the care team for such patients is an

exceptional situation, beyond the typical care they were trained to provide — most of their

patients do not have multiple conditions nor require interaction and coordination with so

many other providers. Some of the providers (e.g., PCPs in complex care clinics) are involved

with many di�erent care teams, each with a di�erent team composition, and each operating

over an extended period of time, often years.

The challenges faced by the care teams in complex care go beyond those previously

studied in healthcare teamwork. In particular, the team coordination challenges they ex-

perience are not addressed by existing theories and tools. Prior studies of inpatient team

coordination typically investigated the coordination of temporal activities (e.g., scheduling

of operations [Bardram, 2000]). In such settings the goals are clear (e.g., find a feasible,

preferred schedule) and team members operate in the same timescale (plans are made for

a specific day). When replanning is needed it is usually done in a centralized manner by

a designated team member (e.g., the charge nurse might reschedule operations if an acute

patient arrives [Bardram and Hansen, 2010]) and the changes are communicated by that

person.

Prior work on outpatient settings has studied the coordination of mobile home care

teams [Pinelle and Gutwin, 2006]. Such mobile teams share some characteristics with complex

care teams, namely their activities are typically loosely coupled and they often do not meet

together to coordinate. However, these teams are smaller than complex care teams and their
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high-level care plan is determined by single person (a case manager). Providers do not need

to reach consensus about goals and their cooperation is not strictly required [Pinelle and

Gutwin, 2006]. In addition, since they all see patients at their homes, they share a common

space where they can leave messages to each other (intentionally or unintentionally).

2.4.3 Foundations for Design of Systems to Support Complex Care

Teams

For complex care teams to develop and successfully use long-term care plans, as well as

for providers to operate as a team, requires systems able to support FLECS teamwork, and

in particular, technology capable of supporting the collaborative, mutual consensus decision-

making of a distributed, diverse team whose members operate on di�erent timescales and

seldom if ever meet as a full group. These systems must also accommodate team membership

changing over the extended duration of complex-care plans.

The social science and CSCW communities have investigated teamwork extensively and

developed theories and tools for supporting team coordination. Such work has studied

teamwork in various domains, exploring various characteristics of the collaborative setting

(e.g., mobile teams [Pinelle and Gutwin, 2006], co-located teams [Reddy and Spence, 2008]),

team structure (e.g., hierarchical and non-hierarchical teams [Hinds and McGrath, 2006], team

homogeneity) and the nature of tasks performed by teams (e.g., loosely-coupled activities

and highly interdependent tasks [Hutchins, 1995]). The FLECS teamwork characteristics

exhibited by complex care teams distinguish it from the teamwork studied in prior work. As

a result, existing tools and approaches do not fully address the challenges FLECS teams face.

In contrast, research in multi-agent systems (MAS) has developed several models of

collaboration that more closely match the characteristics of FLECS teamwork. Each provides

a formal specification for the design of computer agents able to robustly act collaboratively
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as members of a distributed team; they di�er in the facets of teamwork they emphasize. The

Joint Intentions (JI) [Levesque et al., 1990] formalization focuses on a specification of the

mental attitudes required for teamwork. Planned Team Activity (PTA) [Sonenberg et al.,

1992] addresses issues of task allocation and team formation. The SharedPlans (SP) [Grosz

and Kraus, 1996, Grosz and Hunsberger, 2006] formalization directly represents partiality and

evolution of plans. To analyze the opportunities for technology to support complex care, we

chose SP, because it presumes only partial plans, distributed teams acting under uncertainty

and the need for plans to evolve dynamically. These assumptions contrast with JI and PTA

which assume that the team has a complete, fully expanded plan. SP requires certain group

decision-making mechanisms, but not centralized replanning or complete knowledge of all

team members’ plans. It thus better fits the FLECS teamwork characteristics.

SP has been used to improve the performance of multi-agent computer systems teams [Tambe,

1997], as the model for intentional structure in dialogue systems [Rich et al., 2001], and as the

basis of design for collaborative human-computer interface systems [Babaian et al., 2002, Gal

et al., 2012]. While designed to guide the development of computer agents, it also provides

a framework for identifying coordination mechanisms missing in complex care teams and

needed to support their team-based plans.

SP is rooted in the observation that collaborative plans are not simply a collection of

individual plans, but rather a tight interleaving of mutual beliefs and (coordinated) intentions

of di�erent team members. It specifies the beliefs and intentions required of team members

for successful collaborative activities. In particular, SP requires that (SP1) each team member

commit to (i.e., form specific intentions regarding) the team’s performance of the group

activity; (SP2) team members establish agreement on a “recipe” for carrying out the group

action and establish mutual belief they are using that recipe; SP allows for recipes to be

partial, expanded over time, and revised; (SP3) the group agrees on an allocation of tasks in

the recipe according to participants’ abilities to carry them out (i.e., decompose tasks and
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allocate work appropriately); (SP4) team members commit to performing tasks allocated to

them (i.e., adopt intentions to do those tasks); (SP5) team members commit to the success

of others in doing their tasks (i.e., adopt intentions that their teammates succeed).

According to SP, only the team members selected for doing a subtask determine and

know in detail the recipe for that subtask. For example, the neurologist does not need to

know the full details of the PT’s plan for getting the child to walk, and the PT does not

need to know the full details of the neurologist’s plan for treating seizures. SP handles the

problem of interaction among loosely coupled tasks through the required commitments to

the overall team activity and to the success of teammates (SP1 and SP5) and general axioms

of intention. These commitments result in several desired behaviors of team members. In

particular, they necessitate communication among team members when any of them comes

to believe that plans for subparts of the activity interact or when new information is obtained

that could a�ect others’ plans.

Thus, importantly, SP handles the tension between the low communication overhead

of loose coupling (and the resultant lack of shared information about plan details) and

coordination needs (sharing information that matters because of potential plan interactions)

by requiring communication when essential, but not full sharing of all plan details by all

participants. The need for such e�cient communication was evident in our study: some of

the providers we interviewed reported that when complete plans or notes are sent to them,

they are unable to determine the information most important to consider, and they do not

review the information in a timely manner as a result of this information overload.

We illustrate several desired behaviors engendered by SP with examples from complex

care settings. The commitments to the overall team activity and to the success of teammates

require that team members inform others if they learn that their plans are failing or likely to

fail. For example, in the complex care domain, if the physical therapist learns in her session

that the child’s seizures have worsened, she should notify team members who are working
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toward the goal of optimizing seizure medication (in this case the PCP and the neurologist).

Similarly, when team members update their plans, they should notify others about changes if

their plans might a�ect others’ plans. For example, if the GI decides to start feeding the

child by mouth instead of through a tube, she should notify the nutritionist and occupational

therapist who also address feeding issues. Further, although not directly involved in feeding,

the respiratory therapist should also be notified because breathing and feeding often interact.

While such team behaviors and communication protocols are desired, they are hard to

achieve in practice in complex care teams. The examples above assumed that team members

had su�cient knowledge about others’ plans and about the team’s goals to realize that

information should be shared. Our findings, however, show that care providers do not have

this knowledge. Thus, it is unlikely that team members would exhibit the behaviors SP

prescribes. However, SP also suggests ways in which technology could support care teams

and help achieve desired team behaviors. The applications of SP in multi-agent systems

demonstrate that it is in fact both feasible and e�cient to allow individual team members to

dynamically modify their individual plans and that only relatively limited communication is

necessary to ensure that actions of a team members do not interfere with others’ actions.

A SharedPlans-based analysis of complex care team needs suggests the following key roles

for technology for supporting complex care teams:

• Support e�cient information sharing by team members.

• Make the care plan “ever present”, adapting the content and form of its presentation

to individual team members based on their involvement in the plan and context of use.

• Enable care team members to easily adapt and expand parts of the plan, while ensuring

their changes do not conflict with others’ activities.

E�cient information sharing will help team members act in a way that does not conflict

with others’ plans (SP5). The partiality and dynamic nature that SP assumes, and that

31



complex care plans exhibit, leads to the need for enabling easy plan adaptation and expansion.

Deciding what information to proactively share with team members requires reasoning about

the role of that team member in the care plan, and dependencies between di�erent aspects of

the plan.

Making the care plan “ever present” will support team members in establishing and

maintaining agreement and mutual belief about the high-level team plan and allocation of

tasks (SP2 and SP3). Currently, these requirements do not hold in complex care teams as

there are no mechanisms to support them. While care providers want their teammates to

succeed, they do not have su�cient information about others’ plans to act in a way that

supports others or at least does not conflict with their activities. The representation of plans

also needs to be flexible enough to allow for team members to provide incomplete descriptions

of plans that can be easily adapted with time.

2.4.4 Beyond Complex Care Teams

While the study described in this chapter focused on complex care teams, systems able to

support FLECS teamwork have the potential to improve the coordination and e�ectiveness

of teams in many other settings within and beyond the healthcare domain. For example,

teamwork in rescue and recovery e�orts, software development projects, collaborative writing

and research collaborations all exhibit some or all of the FLECS characteristics, and would

benefit from greater support of team coordination [Haake and Wilson, 1992, Yamauchi et al.,

2000].
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Principle Study Findings
1 Children, youth and families are actively engaged

in their care.
Engaging families is a complex process: families
are overwhelmed by the child’s condition; family
engagement is a new concept and many providers
do not feel comfortable with it.

2 Communication with and among their medical
home team is clear, frequent and timely.

Communication is typically infrequent and slow.
Providers often do not communicate among them-
selves, leading to lost information and to parents
being responsible for transmitting information be-
tween providers.

3 Providers/team members base their patient and
family assessments on a full understanding of
child, youth and family needs, strengths, history,
and preferences.

Team members are often focused on their aspect
of the care and do not have a shared “big picture”
view of the child’s overarching goals.

4 Youth, families, health care providers, and their
community partners have strong relationships
characterized by mutual trust and respect.

Our study did not focus on this issue, but our find-
ings show team members do not all know each other.

5 Family-centered care teams can access the in-
formation they need to make shared, informed
decisions.

Team members cannot access all of the informa-
tion about the patient. When they can access it,
they are typically overwhelmed by the amount of
information and have di�culties finding the relevant

information.
6 Family-centered care teams use a selected plan

of care characterized by shared goals and nego-
tiated actions; all partners understand the care
planning process, their individual responsibilities,
and related accountabilities.

Di�erent team members have di�erent concepts and
uses of care plans and care goals. There is no clear
process for defining and revising team care plans.

7 The team monitors progress against goals, pro-
vides feedback and adjusts the plan of care on
an ongoing basis to ensure that it is e�ectively
implemented.

Progress towards goals is often not continuously
monitored and care plans are not updated frequently.
In addition, di�erent providers set goals separately
rather than as a team. Thus, even when monitoring
is done it does not contribute much to achieving
coordinated care.

8 Team members anticipate, prepare and plan for
all transitions (e.g., early intervention to school;
hospital to home; pediatric to adult care).

Parents feel they lack information in times of transi-
tions, which they find especially stressful as respon-
sibility shifts to them (e.g., in- to outpatient care)
or when new providers join the team.

9 The plan of care is systematized as a common,
shared document; it is used consistently by every
provider within an organization and by acknowl-
edged providers across organizations.

Di�erent team members have di�erent concepts and
uses of care plans and care goals. Typically there
are many di�erent plans rather than a single team
plan.

10 Care is subsequently well coordinated across all
involved organizations/systems.

Care coordination is very hard to achieve, both
between organizations and within organizations.

Table 2.2: Principles for successful use of care plans (left column) and findings from
our study that point out the barriers in achieving them (right column).
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Chapter 3

Mutual Influence Potential Networks:

Reasoning About Information Sharing

Of the FLECS teamwork characteristics, the loose-coupling and extended-duration of the

teamwork in particular make e�ective information sharing hard. By decomposing the group

activity into tasks carried out by individual team members, loosely-coupled teamwork reduces

the need for negotiation and resolution of conflicts [Olson and Teasley, 1996]. While such

decomposition allows collaborators to focus on their individual tasks, it makes identifying

dependencies and conflicts harder [Hutchins, 1995, Grosz and Kraus, 1996]. The extended-

duration of the teamwork further exacerbates the problem, as plans and dependencies between

tasks may change. As shown by our study of complex care teams and by others [Hutchins,

1995], team members in such settings often either lack information about relevant activities of

others or are overwhelmed by the amount of information available and unable to identify the

subset of information that is important to them. The overwhelming amount of information

and the lack of information can both result in coordination failures.

This chapter presents a formalization of a new multi-agent systems problem, Information

Sharing in Loosely-Coupled Extended-Duration Teamwork (ISLET). It presents a new
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representation, Mutual Influence Potential Networks (MIP-Nets) and an algorithm, MIP-

DOI, that uses this representation to determine the information that is most relevant to

each team member. Importantly, because the extended duration of the teamwork precludes

team-members from developing complete plans in advance, the MIP-Nets approach, unlike

prior work on information sharing, does not rely on a priori knowledge of a team’s possible

plans. Instead, it models collaboration patterns and dependencies among people and their

activities based on team-members’ interactions. Last, it presents the results of an empirical

evaluation in an environment that simulates collaborative activities, showing that MIP-DOI

is able to identify relevant information. It further explores the e�ect of di�erent aspects

of the teamwork, including team size and coupling of activities on the performance of the

algorithm.

3.1 The ISLET Problem

An ISLET problem setting comprises the following:

• P : a set of collaborating partners. The set can change over time with partners joining

or leaving the team.

• O: a set of objects that partners interact with. The set can change over time as a result

of partners’ actions.

• A: the set of act-types {ADD, MOD, DEL} for adding, modifying or deleting objects.

These general domain independent act-types are specialized to domain-specific act-types

in each application domain.

• S: interaction sessions of partners. A session s(p, t, (Èa1, o1Í, ..., Èa|s|, o|s|Í)) is defined

by a triple: the partner acting, the time of the session, and a set of pairs of act-types
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and the objects they operate on (Èai, oiÍ) 1. For brevity, we denote a session recorded

at time t as st.

The ISLET problem is to determine a set of objects Oshare µ O, where |Oshare| = l,

to inform p œ P about, given sessions s1 to st≠1 and the identity of the partner p who is

starting st. The constraint on the cardinality of Oshare (l), is a communication budget, which

restricts the amount of information that can be shared. It reflects the need not to overwhelm

partners with too much information. The objects in the set Oshare should be relevant to the

partner. The notion of relevance has been widely discussed in the literature on cognition and

communication [Sperber and Wilson, 1987]. Intuitively, information is relevant if it will a�ect

the partner’s actions. The specific definition of relevance, however, is domain dependent.

To illustrate ISLET settings, we will use the example of a collaborative writing scenario

in which a group of researchers (the P ), comprising Alice, Bob and Chris, writes a grant

proposal together. In this scenario, the set of objects (O) includes the paragraphs of the

proposal. Specializing to the domain and applying act-types (A) to objects yields such

actions as writing new paragraphs, removing paragraphs or editing paragraphs. Sessions (S)

are added over time as Alice, Bob, and Chris edit the document, and the set O evolves as

paragraphs are added or deleted. P can also evolve over time; for instance, Dan might join

in writing the proposal.

On Monday morning (t10), Alice (p1) edits the document, taking the following actions:

modifying paragraph 3 (ÈMOD, o3Í), deleting paragraph 4 (ÈDEL, o4Í) and adding a new

paragraph (ÈAdd, o5Í). These actions together constitute the session shown in Figure 3.1(a).

The following day, Chris begins editing the document. In this example, the ISLET problem

is to choose the set of paragraphs to share with Chris. For example, if l = 2, Oshare should

include the two paragraphs that have changed since Chris last edited the document and that

1We use only the Èai, oiÍ pairs to emphasize that the partner and time are the same for all actions taken
in a single session.
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Figure 3.1: (a) An interaction session s10; (b) The MIP-Net after sessions s1 ≠ s9;
(c) The updated MIP-Net after session s10.

are deemed most relevant to Chris’ activities.

3.2 Mutual Influence Potential Networks

MIP-Nets represent interactions between partners and objects and dependencies between

di�erent objects. In a MIP-Net, partners and objects are represented by nodes. A particular

partner p œ P and an object o œ O are represented by nodes np and no, respectively.

Henceforth, we use p when referring to a particular partner and o for a particular object.

Particular nodes np and no are connected by an edge if p performed an action on o. The

edge weight corresponds to the extent of the interaction: if p takes many actions that a�ect

object o, this will be reflected by a high weight on the edge connecting np and no. Thus, the

weights on such edges represent information about team members’ responsibilities, which we

refer to as “role allocation”. Similarly, no and noÕ are connected by weighted edges based on

the frequency at which the objects they represent are modified in the same sessions. Edges

connecting object nodes thus represent object dependencies, i.e., the extent to which team

members tend to change one object when they change the other. We refer to these object

dependencies as the “task structure”, because these groupings are likely to be a reflection

of an underlying task. For instance, in a research paper, paragraphs reporting results in a

Results section and in a Conclusion section might be frequently edited together as part of

the same underlying task of adding new results to the paper. Importantly, this sense of task

structure is much looser than that used in formal plan representations such as Hierarchical
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Task Networks in which dependencies between di�erent tasks are explicitly specified.

Formally, a MIP-Net consists of:

• NP : a set of partner nodes.

• NO: a set of object nodes.

• E: a set of edges, each edge connecting a partner node with an object node or two

object nodes.

Figure 3.1(b) shows a sample MIP-Net. Partner nodes and edges connecting partners

and objects are shown in blue. Object nodes and edges connecting them are shown in red.

Numbers on edges represent the edge weights.

3.2.1 Constructing and Updating MIP Networks.

MIP-Nets are constructed and updated over time based on partners’ sessions. At the

end of each session st, the MIP-Net is updated. The MIP-Net update procedure, shown in

Algorithm 1, first checks whether p is already represented by a node in the MIP-Net. If not,

a new node is added to NP (lines 1–2). Next, it iterates over all actions in the session; new

object nodes are added as a result of ADD actions, and the weights of edges connecting np

with object nodes representing objects on which that partner acted are incremented by 1

(lines 4–8). Similarly, the weights of edges connecting object nodes representing objects that

the partner interacted with in the same session are incremented by 1 (lines 9–15). We note

that nodes representing deleted objects persist in the MIP-Net as information about their

connections can implicitly reveal dependencies between other objects.

To illustrate the MIP update procedure, consider the collaborative writing scenario

described earlier: assume the MIP-Net at time t = 9 is the one shown in Figure 3.1(b).

Following s10 (Figure 3.1(a)), the MIP-Net is updated, yielding the network shown in

Figure 3.1(c). As shown, a node representing o5 was added to the MIP-Net and the weight on
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Input: s(p, t, (Èa1, o1Í, ..., Èa|s|, o|s|Í))
1 if np /œ NP then
2 NP = NP fi np

3 end
4 for a, o œ s do // increment weights of p-o edges

5 if a = ADD then
6 NO = NO fi no

7 IncrementWeight(np, no)
8 end
9 for a, o œ s do // increment weights of o-o edges

10 for aÕ, oÕ œ s do
11 if o ”= oÕ then
12 IncrementWeight(no, noÕ)
13 end
14 end
15 end

Algorithm 1: The MIP-Net update procedure.

edges connecting p1 (the node representing Alice) with o3, o4 and o5 were incremented. The

weights on edges connecting all pairs of objects included in the session (e.g., o3 and o4) were

also incremented. Although o4 was deleted, the node representing it persists in the MIP-Net.

The computational complexity of this procedure is dominated by |s|2, where |s| is the

number of Èa, oÍ pairs in the session. The update procedure requires one iteration over the

set of Èa, oÍ pairs to update the weights connecting np with nodes representing the objects

interacted with during the session, and a second iteration over all pairs of objects o, oÕ that

were interacted with in the session to update weights on edges connecting object nodes.

3.3 The MIP-DOI Algorithm

The MIP-DOI algorithm uses the MIP-Net to reason about information sharing in ISLET

problem settings. To quantify the relevance of modifications to some object o to some partner

p, we use the concept of Degree-Of-Interest (DOI). Furnas [1986] defined DOI(x | y) as the

degree of interest a user has in an item x, given that the user is focused on some item y. It is
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computed it as follows:

DOI(x | y) = – · API(x) + — · D(x, y)

API(x) is the a priori importance of item x. It is independent of the user’s identity and

aims to reflect the global importance of an item. D(x, y) is the distance between x and y. It

aims to reflect the importance of x given the user’s context.

The rationale behind this formulation is that, generally, a user will be interested in

items that are close to her current focus of attention, as well as in items that are of general

importance [Furnas, 1986]. This notion of DOI fits our purposes, as collaborators will likely

find value in information about objects that are closely related to objects they interacted with

or currently focus on, as well as in information about objects that appear to be of significant

importance to the team’s activities as a whole.

As initially introduced, DOI was computed over items in a tree. Similar to Van Ham and

Perer [2009], we use a network-based DOI metric. In our formulation of DOI, we consider two

di�erent nodes as representing p’s focus of attention: (1) the node representing the partner

in the MIP-Net (np), as the edges from np capture the extent of interaction between p and

the di�erent objects, and (2) the node representing the object that the partner acts on at the

beginning of a session, denoted of for “focus object”. In many settings, information about

of is available to the system (e.g., observing the paragraph Alice starts editing) and can be

integrated in the DOI computation. In sum, we measure DOI by computing:

DOI(o | p, of ) = – · API(no) + —1 · D(no, np) + —2 · D(no, nof
)

The distance values D(no, np) and D(no, nof
) can be computed using various distance

measures for networks. We used the Adamic/Adar proximity metric [Adamic and Adar, 2003],

adapted to take into account edge weights.
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Network centrality metrics can be used to compute the a priori importance of an object

node no. Our implementation uses deg(no) (the sum of weights on edges connected to no).

Note that the importance of objects can change over time. For instance, if many partners

interact with an object, its degree will increase and thus its centrality will increase.

To determine the set of objects Oshare µ O to share with p, the MIP-DOI algorithm

computes DOI(o | p, of) for each o œ O and chooses the l objects with the highest DOI

(recall, l is the communication budget). The computational complexity of MIP-DOI depends

on the methods used to compute API and D. In our implementation it is dominated by |O|2.

3.4 Empirical Methodology

Before integrating MIP-DOI intro real-world systems (as described in Chapter 4), we

evaluated the ability of MIP-DOI to identify relevant information with a collaborative activity

simulation. This simulation was conducted for two reasons. First, it provides a ground truth

for assessing the relevance of information. Second, collaborative activities can vary in many

aspects, including the size of the group, frequency of interactions and coupling of tasks. For

example, Wikipedia articles are written by a large number of authors with a small percentage

of the authors making the majority of contributions, while academic papers are typically

written by a much smaller number of authors who act in a more coordinated way (e.g., they

might divide responsibilities for di�erent sections). Software projects hosted in GitHub also

di�er significantly in the nature of the collaboration on projects [Kalliamvakou et al., 2014].

Some projects include a small group of collaborators that contribute fairly equally, while

others have one or two main contributors and a large number of developers who only make a

single contribution. In healthcare, the role allocation among care providers is much more

strict due to their specialization. The simulation enables exploration of the e�ects of such

aspects of teamwork in a controlled environment.
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3.4.1 Collaborative Activity Simulation

We designed a collaborative activity simulation in which a group of partners (P ) are faced

with a constraint satisfaction problem that abstracts the type of coordination problems that

arise in collaborative activities. In the simulation, the partners collaboratively color a graph

G(V, E) using a set C of colors such that no two neighboring vertices are assigned the same

color. Constraints on the colors of neighboring vertices correspond to a group’s need to align

their activities. For example, in the writing scenario, a paragraph summarizing the results in

the introduction of the paper must align with the results described in the results section. In

healthcare, a choice of a course of treatment for one condition can constrain treatment of

other conditions due to conflicting e�ects.

We formulate this collaborative activity as an instance of an ISLET problem as follows:

• P : collaborating partners.

• O: graph vertices.

• A: The act-types MOD, DEL and ADD are instantiated as follows: mod(v, c, cÕ)

changes the color of v from c to cÕ, where c, cÕ œ C. add(v) adds a new vertex vÕ as a

neighbor to an existing vertex v. del(v) removes vertex v from the graph.

• S: Interaction sessions: the session s(p, t, (Èa1, o1Í, ..., Èak, okÍ)) consists of the changes

made to the graph by p at time t.

For simplicity, in this section we describe a simulation in which the set of objects is constant

(i.e., only the MOD act-type is used).

To reflect the information that would be available in real-world settings, the algorithms

do not have access to the graph structure (G). They only know about the existence of objects

(vertices) that partners interacted with and their colors, but do not have information about

edges.
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Partners know the graph structure (i.e., the edges between vertices), but do not know the

current color of a vertex unless it was shared with them, and they assume a vertex’s color

has not changed until they receive new information. This reflects the ISLET setting in that

partners might know what potential dependencies exist between di�erent objects, but not the

current state of the di�erent objects. They thus might not be aware of conflicts. For example,

Alice might know that there is mutual dependency between di�erent sections of a proposal,

but not be aware of inconsistencies in current versions of the sections without reading them.

Two key factors in the simulation are the graph structure and the way partners choose

Omodify at each round. As described earlier, we aim to support loosely-coupled teamwork. In

such teamwork, we expect partners to have some (possibly non-strict) allocation of roles, and

that there would typically be more constraints between objects that are modified as part of a

specific role or task, than between objects that are modified in the context of di�erent roles

or tasks.

To model the loosely-coupled nature of the teamwork, we generate clustered graphs, where

vertices within each cluster are more likely to have an edge connecting them than vertices that

belong to di�erent clusters. We specify the number of clusters, the probability of creating an

edge between vertices in a cluster (pwithin) and the probability of creating an edge between

vertices in di�erent clusters (pbetween). We then randomly generate graph instances using

these parameters. For example, there are likely to be more dependencies between paragraph

in the same section than between paragraphs in di�erent sections. Similarly, in complex

health care, there are likely to be more dependencies between treatments related to one

aspect (e.g. mobility) of the care, than between treatment related to di�erent organ systems.

To reflect role allocation among the partners, we assign each partner with probability

distribution over vertices. Each partner is assigned a single primary cluster, and most of the

probability mass (pprimary) is assigned to that cluster. The choice of the focus object (of ) is

based on these distributions: with probability pprimary, p will choose an object of from its
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primary cluster, while it will choose of from another cluster with probability 1 ≠ pprimary.

The remaining k ≠ 1 vertices in Omodify are chosen in proportion to their distance from of

in the graph. Specifically, the probability of choosing a vertex decreases exponentially with

its distance from the of . The rationale for this choice of objects is that partners are more

likely to choose objects related to their primary task, and further that they are more likely to

modify a set of objects that interact with each other. For example, when editing a document

Alice will have a task in minde and will not simply choose a random set of 5 paragraphs to

edit, but rather edit paragraphs that are related to some higher-level aspect of the paper).

In each round of the simulation procedure, shown in Algorithm 2, the partners take turns

modifying vertex colors, as follows: (1) In turn, each partner p chooses a focus object, denoted

of , and a set of k objects to modify denoted Omodify (line 3). The object of is chosen from

the partner’s primary cluster with probability prprimary (and from a di�erent cluster with

probability 1 ≠ prprimary). The remaining k ≠ 1 vertices in Omodify are chosen in proportion

to their distance from of in the graph, to reflect higher likelihood of partners carrying out

activities that are closely related to each other in each session; (2) A set Oshare of l objects

to inform p about are chosen by the information sharing algorithm, given p, of and sessions

s1 to st≠1 (line 4); (3) The belief of p about vertices’ colors is updated to reflect the shared

information (line 5); (4) p chooses colors for objects in Omodify, such that the assignment

minimizes the number of conflicts known to p, based on its updated belief (line 6); (5) The

problem instance is updated to reflect the new coloring (line 7).

Evaluation Metrics

We consider an object o œ Oshare relevant if there is an edge connecting o to at least one

object in Omodify, as such information can directly a�ect p’s choice of action. We measure

precision ( |OrelevantflOshare|
|Oshare| ) and recall ( |OrelevantflOshare|

|Orelevant| ).
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Input: P, problemInstance, k, l, maxRounds
1 while t < maxRounds do
2 for p œ P do
3 Omodify, of = p.chooseObjects(k)
4 Oshare = getObjectsToShare(l, of )
5 p.updateBelief(Oshare)
6 st = p.chooseActions(Omodify)
7 problemInstance.update(st)
8 end
9 t = t + 1

10 end
Algorithm 2: The graph coloring simulation procedure.

Parameter Description
|P | Number of partners [5]
|Cl| Mean cluster size [10]
prprimary Probability of is chosen from the primary cluster [0.8]
prwithin Probability of creating an edge between vertices in the same cluster [0.3]
prbetween Probability of creating an edge between vertices in di�erent clusters [0.05]
k = |Omodify| Number of actions p can take in a single session [3]
l = |Oshare| Number of objects that can be shared in a single session

Table 3.1: The parameters controlling simulation configurations. Values in brackets
were used in the experiments described in Section 10.
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Algorithm Comparisons

We evaluate the performance of the following algorithms:

• Omniscient: has access to the graph structure and chooses objects in proportion to

their distance from of .

• Most frequently changed: chooses objects that were changed most frequently by

partners.

• Most recently changed: chooses objects that were changed most recently by partners

.

• Random: chooses the objects to share randomly.

• MIP-DOI: varying the coe�cients –, —1 and —2. We focus on the following configura-

tions to test the e�ect of the di�erent DOI components, and describe a few combinations

of the components:

– MIP-DOI-centrality: the DOI computation only considers objects’ centrality

(– = 1).

– MIP-DOI-partner: the DOI computation only considers objects’ proximity to

the partner node (—1 = 1).

– MIP-DOI-focus: the DOI computation only considers objects’ proximity to the

focus object node (—2 = 1).

With all MIP-DOI configurations, we used Algorithm 1 to update the MIP-Net at the end

of each session. To ensure a fair comparison, all algorithms (MIP-DOI and baselines) choose

the l vertices to share with p from the set of objects that were changed last by some pÕ ”= p.

We use the same seed when generating random numbers for determining stochastic decisions

(e.g., the choice of of ) such that all algorithms are evaluated using the same conditions.
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Figure 3.2: (a) Average precision by round (10 di�erent graph instances with 5
runs each). (b) Precision-recall curve generated by varying l; each point shows the
precision and recall for a given communication budget (l) with results aggregated
from rounds t15 ≠ t99.

Simulation Results

This section reports in detail the results of a simulation that used the parameter values

shown in brackets in Table 3.1. The relative performance of the di�erent algorithms was

consistent across other parameter settings. Figure 3.2(a) shows the precision obtained by each

of the algorithms with l = 3. Overall, all MIP-DOI configurations significantly outperformed

all baselines except of course for the omniscient baseline which has access to the graph

structure. As can be seen in the figure, of the MIP-DOI configurations, MIP-DOI-focus

achieved the best performance. Over time, its performance becomes close to that of the

omniscient algorithm as more information about the task structure is accumulated in the

MIP-Net.

If algorithms do not have access to of , MIP-DOI-partner (proximity of objects to partners)

still outperforms all other uninformed baselines, demonstrating that MIP-Nets e�ectively

recover information about partners’ role allocation (i.e., their cluster assignment). MIP-DOI-

centrality, despite not incorporating the proximity of objects to of or p, still outperforms the

other baselines, but achieves relatively low accuracy.

Figure 3.2(b) shows precision-recall curves for the algorithms. The curves were generated

by varying the communication budget l between 1 (the leftmost points in Figure 3.2(b)) and
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—2 = 1 (focus) – = 0.3, —2 = 0.7 —1 = 1 (partner) – = 0.3, —1 = 0.7
t0 ≠ t14 0.40 0.45 0.33 0.36
t15 ≠ t99 0.69 0.55 0.42 0.39

Table 3.2: Average precision obtained by MIP-DOI with di�erent configurations in
early and late rounds of the simulation.

the total number of changed objects considered for sharing. The results are aggregated starting

from round 15, a point at which the MIP-Net has accumulated some information about

partners’ activities. As can be seen in the figure, all configurations of MIP-DOI significantly

outperform the uninformed baselines. The gap between the performance of MIP-DOI-focus

and the omniscient algorithm is relatively small when using very limited communication

budgets (l Æ 3), demonstrating that the MIP-Net representation can e�ectively distinguish

between clearly relevant objects (high proximity to of) and clearly irrelevant objects (low

proximity to of). For larger values of l, the MIP-Net representation is less capable of

separating relevant and irrelevant objects and the di�erence between MIP-DOI and the

omniscient algorithm is greater.

While MIP-DOI-centrality does not perform well, integrating – (object centrality) with

either —2 (proximity to of , when of is known) or with —1 (proximity to the partner, when

of is unknown) leads to improved performance in early rounds, as objects that are more

central are likely to have more short paths connecting them with other objects, and thus

higher probability of being chosen for Omodify. This can be seen in the first row of Table 3.2.

However, once su�cient information about specific objects and partners’ roles is accumulated,

integrating – results in lower precision (second row of Table 3.2).

Team members are likely to have more di�culty identifying relevant information about

objects they interact with infrequently. Therefore, we examined the extent to which MIP-DOI

is able to retrieve relevant objects that do not belong to partners’ primary clusters. When

using MIP-DOI-focus with l = 3, 72% of the objects in Oshare were from outside of the

partners’ primary clusters. Using MIP-DOI-partner leads to less sharing of information from
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outside the primary cluster (50%), as the DOI focuses on distance from the partner’s node.

MIP-DOI-centrality shares the most information from outside the primary cluster (87%), but

at the cost of sharing many irrelevant objects.

These analyses were based on a specific configuration of the simulation, but the general

trends in performance were robust across di�erent parameter configurations of the simulation.

We next describe the e�ects of varying the simulation parameters on the performance of

MIP-DOI.

Team size: varying the number of partners (|P |) does not substantially a�ect the

performance of MIP-DOI-focus. More objects are changed at each turn, resulting in higher

precision when using MIP-DOI-focus. Recall, however, does not increase because there are

overall more relevant objects. The performance of MIP-DOI-partner degrades with increased

team size, as it takes longer to learn the role allocation.

Cluster size: increasing the number of objects in each cluster (|Cl|) leads to lower

precision of all MIP-DOI configurations, as it takes the MIP-Net longer to capture the

dependencies (constraints) between objects and the roles of partners.

Number of modified objects: when increasing the number of objects a partner can

change in a session (k), there are two e�ects: on the one hand, more information is incorporated

in the MIP Update procedure (as more actions are taken). On the other hand, the relationship

between pairs of objects is less indicative of constraints between them (e.g., there is a higher

likelihood of choosing more distant objects to change together with of). Overall, the

performance of MIP-DOI is similar across di�erent values of k. Precision increases as there

are simply more relevant objects, but recall does not.

Role allocation strictness: the strictness of role allocation is determined by prprimary,

that is, the probability that a partner chooses of from its primary cluster. The performance

of MIP-DOI-partner is a�ected most by the changes to role allocation: with more strict role

allocation (higher prprimary), it is easier to capture the roles of di�erent partners, and thus
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the proximity between object nodes and the partner node is more indicative of relevance. The

other algorithms are not a�ected much by these changes. Their precision slightly decreases

when increasing prprimary as less relevant objects change between each partner’s consecutive

sessions, but recall remains similar.

Graph structure: the parameters prwithin and prbetween determine the likelihood of edges

(constraints) connecting vertices in the same and in di�erent clusters respectively. Generally,

increasing both probabilities means that there are more edges in the graph, and thus more

potentially relevant objects to share. Therefore, precision generally goes up with higher values

of prwithin and prbetween, while recall does not. The exact e�ect depends on the specific values

of these probabilities. prbetween in essence controls the level of coupling between partners’

activities. With smaller values of prbetween, it becomes harder for MIP-DOI to learn about

the dependencies between di�erent partners’ activities, and thus it becomes harder to share

with a partner relevant information from outside that partner’s primary cluster.

3.5 Related Work

Prior work has developed various algorithms for determining information sharing in

settings with multiple agents. We review key approaches from the multi-agent systems

literature and distinguish the problem setting and the approach presented in this chapter

from those studied in prior work.

Theories of teamwork and collaboration [Grosz and Kraus, 1996, Cohen and Levesque,

1990, Sonenberg et al., 1992] emphasize the key role of communication in teamwork. Belief-

Desire-Intention (BDI) approaches to multi-agent planning often base their communication

mechanisms on these theories. For example, the joint intentions model [Cohen and Levesque,

1990] defines conditions for communications, such as communicating to establish joint inten-

tions, communicating the achievement of a goal, and communicating when learning that a goal
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cannot be achieved. These ideas were used in the STEAM multi-agent framework [Tambe,

1997]: In this framework agents use a decision tree to determine whether to communicate

information about operation termination by considering their belief about the joint intentions

of the team and weighing (the domain specified) costs and risks of not communicating.

Other works have developed teamwork programing languages that include explicit rule-based

communication mechanisms [Weerasooriya et al., 1995, Pokahr et al., 2005].

Prior work on decision theoretic approaches to multi-agent communication can generally

be classified to two types: approaches that reason about communication during planning time,

and approaches that reason about communication during execution time. The DEC-POMDP-

COM model [Goldman and Zilberstein, 2003] and the COM-MTDP model [Pynadath and

Tambe, 2002] provide a theoretical model for reasoning about communication during planning

time and include communication actions in the agents’ policies. Spaan et al. [2006] developed

a model in which the communicated information is included in the actions vectors of agents,

and is then incorporated into the observation vectors received by agents in the next time

step. O�ine approaches assume that all possible observations that agents may receive are

known during planning time.

Other approaches reason about communication during execution time [Xuan et al.,

2001, Oliehoek et al., 2007, Emery-Montemerlo et al., 2005]. Such approaches aim to

identify situations in which communication would improve the group’s performance, based

on observations obtained by agents. This reduces computational complexity since agents

do not need to consider in advance what to communicate at each possible scenario, but

rather only reason about communication given their actual observations. For example, Roth

et al. [2005] reason about communication by growing a tree of the possible joint beliefs

of the team. This work has been extended to consider not only when to communicate,

but also what subset of observations to communicate to other team members [Roth et al.,

2006]. The approaches proposed in the above two works assume a known joint policy, such
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that agents can deterministically determine what action each agent in the team would take

following communication. Wu et al. [2009] propose an algorithm for online planning and

communication. The algorithm merges observation histories based on their similarity in terms

of future actions. They then use these history cluster to reason about histories incompatibility,

which determines communication. This model does not include communication cost, but

instead tries to maximize utility while minimizing the amount of communication. Several

other approaches have also addressed the problem of communication during execution time.

There are few prior works that have combined BDI concepts with decision theoretic

approaches to reason about communication. Inspired by BDI teamwork, Kwak et al.

[2011] define trigger points in which communication should be considered in the context

of a DEC-POMDP model. These trigger points occur when there is an ambiguity in the

mapping from a joint policy of an agent to its action. When such ambiguities arise, agents

reason about the possible gains from communication, where an agent can communicate

either by asking for information or by telling other agents about their observations. This

model still requires knowledge of all possible observations that might be obtained during

execution. Finally, Kamar et al. [2009] developed the PRT representation of collaborative

activities which extends the BDI SharedPlans theory to include uncertainty and utility. They

further develop algorithms that evaluate the utility of PRTs to reason about helpful actions,

including communication. These algorithms compare the utility of a given PRT representing

probabilities over possible plans of collaborating agent, with the utility of a modified PRT that

takes into consideration the new information and might therefore assign di�erent probabilities

to plans.

All of the approaches described above, both BDI and decision theoretic, rely on a complete

plan knowledge assumption; they assume availability of a complete domain model of the

actions or plan library, state space, and utilities or goals. They use this model and knowledge

of a team’s plans or policies to compute the value of information. Although some approaches
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assume only incomplete knowledge of agents’ plans and use reinforcement learning [Zhang

and Lesser, 2013, Barrett and Stone, 2015] or plan recognition [Kaminka et al., 2002, Amir

and Gal, 2013] to infer other agents’ plans or parts of the environment model (e.g., transition

and reward functions), these approaches still assume a known planning domain (i.e., known

state space and actions in MDP frameworks, or known plan library in plan recognition

approaches). In many distributed human teamwork settings, such plan models are rarely

explicitly specified. For example, the complex health care teams we studied might agree on

high-level treatment goals but never fully specify a long-term plan. The approach we present

for ISLET problems does not rely on the complete plan knowledge assumption.
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Chapter 4

A Personalized Change Awareness

Mechanism for Collaborative Writing

Change awareness mechanisms [Tam and Greenberg, 2006, Dourish and Bellotti, 1992]

are a prominent approach for supporting coordination in distributed teams. They assist

team members in tracking each others’ activities. By enhancing team members’ knowledge of

others’ activities, they provide context for evaluating their own actions and ensuring they

align with the team’s activity as a whole [Dourish and Bellotti, 1992]. Change awareness

mechanisms include change tracking (e.g., Microsoft Word’s “track changes” feature, Google

Docs’ “suggesting” feature), Di� tools (e.g., comparing two versions of code on GitHub) and

commenting features.

While some change awareness mechanisms allow team members to filter the information

presented to them (e.g., to omit styling changes in a document, to show changes made by

a particular collaborator), they do not reason about the relevance of such information to

a particular team member. Team members therefore need to identify the information they

should review and to notify their collaborators about changes they have made if they expect

those changes to a�ect collaborators’ activities. Consequently, team members often face one
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or both of the following coordination challenges: (1) high coordination overhead as a result

of information overload when too much information is shared, or (2) coordination failure

due to lack of important information when too little information is shared or when relevant

information cannot be found [Lowry et al., 2004, Steves et al., 2001, Pinelle and Gutwin,

2006, Amir et al., 2015].

In this chapter, we introduce the notion of personalized change awareness mechanisms.

Such mechanisms reason about the structure of the collaborative activity to identify and share

with team members only a subset of the change information that is deemed most relevant

for their own activities. Personalized change awareness mechanisms have the potential to

improve coordination in distributed loosely-coupled teamwork through simultaneously (1)

lowering coordination overhead by reducing the total amount of change information each

team member needs to review, and (2) improving the chances of coordination success by

ensuring that each team member receives the information most relevant to her task.

We describe an implementation of a personalized change awareness mechanism for sup-

porting collaborative writing that uses the MIP-DOI algorithm. When an author returns to

a shared document, the mechanism highlights a subset of edits made by collaborators that

are deemed most relevant to her, thus limiting the amount of information she needs to review

prior to making her own writing contributions. We also describe extensions to MIP-DOI that

make use of additional domain-specific knowledge in the context of writing (e.g., document

structure).

Lastly, the chapter describes an evaluation of this personalized change awareness mech-

anism, demonstrating its benefits to team members. In the experiment, we compared

personalized change awareness to two baselines: a change awareness mechanism that showed

all of the changes, and a change awareness mechanism that showed the same number of

changes as the personalized mechanism, but selected the changes to share at random. Our

results show that both mechanisms that restricted the number of changes shown, Personal-
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ized and Random, led to reduced participants’ perceived workload and higher productivity

compared to the condition in which all changes were shared, demonstrating the benefits of

personalized change awareness with respect to reducing coordination overhead. They also

show that personalized changes shared with participants were rated as more helpful than

randomly chosen changes, and that the quality of the team’s documents was higher with the

personalized mechanism compared to the random mechanism, demonstrating the importance

of sharing relevant changes.

4.1 A Personalized Change Awareness Mechanism for

Collaborative Writing

The approach for personalizing change awareness in the context of collaborative writing

comprises three steps, described in the consequent subsections: (1) mapping paragraphs across

revisions and identifying changes to the document; (2) updating a MIP-Net representing the

group activity, and (3) computing MIP-DOI to choose a subset of changes to share with a

particular co-author. Steps (1) and (2) are executed at the end of each editing session. Step

(3) is done when a particular author begins a new editing session.

For simplicity, we describe the approach assuming asynchronous editing, such that each

revision is written by a single author, during a single editing session. Our approach, however,

can also handle synchronous editing.

4.1.1 Mapping Paragraphs and Identifying Changes

The first step in our approach is to identify the paragraphs that changed when an author

completes an editing session, and the extent of changes. This task is non-trivial because

paragraphs can be moved, deleted and added over time. We use the method proposed
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by Gehrmann et al. [2015] which computes pairwise similarities between paragraphs in the

previous and current revisions to identify paragraphs that were moved.

Once paragraphs are matched, editing actions are identified by comparing the old and

new versions of the same paragraph. If a paragraph has changed, the extent of change is

computed using cosine similarity, and an edit action is added to the session’s action list. New

paragraphs are considered to have a change extent of 1 and an add action is included for each

added paragraph. Similarly, each deleted paragraph results in a delete action in the session,

and the change extent for these paragraphs is set to 1. The sequence of actions taken in the

session and the identity of the author who took these actions (referred to as the session’s

author) are given as input to the MIP-Update procedure described next.

4.1.2 Updating a MIP-Net of the Collaborative Activity

The MIP update procedure (described in more detail in Section 3.2) iterates over the list

of actions in the session, and updates the MIP-Net as follows. First, if the session’s author is

not yet represented in the MIP-Net, a new partner node is created. Similarly, a new node is

added for each of the new paragraphs that were introduced in the session. Second, for each

paragraph edited in the session, the weight on the edge connecting the node representing the

session’s author and the nodes representing the edited paragraphs are incremented. Third,

the weight on edges connecting each pair of paragraphs that were edited in the session is

incremented.

4.1.3 Using MIP-DOI to Reason About Information Sharing

At the beginning of a new editing session, the current MIP-Net is used to determine the

changes to share with the author who began the new editing session, whom we refer to as

the current author. MIP-DOI is applied to the full set of changes that were done since the
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last editing session of the current author. This set of changes is extracted by combining all

the editing actions from sessions that were done after the author’s last editing session.

In the implementation of the personalized change awareness mechanism for collaborative

writing, we extended the MIP-DOI algorithm to make use of additional information that is

available in the writing domain in two ways. First, we consider the extent of the change made

to the paragraph. This information is incorporated to distinguish between minor edits (e.g.,

typo fixes) and more substantial edits. We filter the set of changes considered for sharing

to include only those changes for which the change exceeds a threshold of 0.05 (determined

empirically using Wikipedia data).

Second, we consider the proximity of the author not only to the changed paragraphs, but

also to the sections they appear in. By doing this, we utilize knowledge of the document

structure to include more information about the authors’ areas of responsibility and interests.

While in many cases an author has not edited in the past the particular paragraph that has

changed, knowing that the author has edited other paragraphs in the same section suggests

possible interest in the content of the section. In sum, we consider all paragraphs that have

been changed since the current author’s last editing session and which exceed the change

extent threshold. We rank them using the following DOI computation:

DOI(o | p) = – · API(no) + — · D(no, np) + “ · D(So, np)

where D(So, np) is the proximity of the team member node to the nodes in the section

that contains the modified paragraph, computed by averaging the proximity to each of the

paragraphs in the section. Our implementation uses – = 0.1, — = 0.8, “ = 0.1. We chose these

values to give the highest weight to the proximity between the author and the paragraph, and

based on empirical retrospective analysis of our own co-authored documents. We omitted the

focus object component which was introduced in the DOI computation in Section 3.3 because
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the personalized change awareness mechanism we implemented did not have information

about the particular section authors intended to edit.

4.2 Experiment

To evaluate the personalized change awareness mechanism, we conducted an experiment in

which participants collaboratively edited summaries of prominent news stories. We compared

personalized change awareness to two baselines: one in which all changes were shown, and

one in which only a subset of changes were shown (thus limiting the coordination overhead),

but the changes were selected randomly. This design allowed us to separately investigate the

impacts of the relevance and the quantity of the change information shared with each team

member.

4.2.1 Participants

We recruited 18 undergraduate students to participate in the study (11 females, 7 males;

aged 18 through 22). Participants received $40 for completing the study. Participants were

divided into six teams of three.

4.2.2 Task

News summaries. Participants in the study collaboratively edited summaries of three

news stories: Brexit, the coup attempt in Turkey, and the 2016 US presidential elections

primaries. For each news story, participants were given an initial summary of the story

(3000 words, 11 sections, 60 paragraphs), and were asked to expand the summary based on

additional news items given to them in each session. We chose to start with an existing

summary to make it non-trivial to identify all the edits made by co-authors from the start.
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The initial news summaries were adapted from summary articles taken from major news

sources.

In each of their editing sessions, participants were given a list of news items to add to the

summary. A few examples of these news items are given in Table 4.1. We gave participants

the news items so that they would focus their e�orts on incorporating the information into

an appropriate place and ensuring it aligned with other parts of the summary, rather than on

composing new prose or synthesizing information. For the most part, this meant participants

could simply paste each of the news item snippets into the summary (and update other places

to avoid duplication of information or conflicts). In some cases participants changed some of

the wording to make the text fit better within an existing paragraph. This choice led to a

controlled setting in which the team performance did not depend on the writing abilities of

team members but rather on their ability to maintain an up-to-date and coherent document.

The news items were taken from short news pieces published in Associated Press or

Reuters, in chronological order, such that updates which appeared in the general media at

the same time tended to appear together in our lists as well. Participants were instructed

to ignore their knowledge of the news story and update the summary only based on the

information provided to them.

This task setup mimicked the kind of work that is done in a real news desk, where one of

the authors had worked. In the news desk, journalists update a shared document and need

to avoid redundancies and conflicts under strict time constraints.

Editing teams. Participants worked in 3-person editing teams. A team size of 3 had

the essential coordination complexity in terms of participants not being able to easily keep

track of everybody’s edits, but was small enough that the entire task could be completed in

a reasonable time frame for an experiment (over 7–10 days).

Each team member was assigned an editing role. There were two types of editing roles,

specific and general. Two members of each team were assigned specific editing roles. They
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News story Example news items

Brexit UKIP leader Nigel Farage hailed it as the UK’s “independence day”, while Boris
Johnson said the result would not mean “pulling up the drawbridge”. (political
editor)
Britain’s vote to leave the European Union has thrown financial markets into turmoil
and means the U.S. Federal Reserve’s ambitions for two rate rises this year have
been placed on hold. (economics editor)

Turkey coup Turkey’s main opposition Republican People’s Party (CHP) said the repose to a
failed coup attempt must be conducted within the rule of law and that the plotters
and those who helped them must be tried in the courts. (political editor)
French President Francois Hollande said he expected there would be a period of
repression in Turkey in the aftermath of a failed coup by some elements of the
military. (foreign editor)

US Elections More support for Clinton, as the race looks like it’s over: Bernie Sanders endorses
Democratic rival Hillary Clinton. ‘She must become our next president’, Sanders
said in his statement. (democratic-party editor)
U.S. Secret Service o�cials say security planning for the Republican national con-
ventions took into account large-scale terrorism threats like the vehicle attack that
occurred in France. (republican party editor)

Table 4.1: Examples of news items given to participants for each of the news stories.

were responsible for updating the summary with respect to a particular aspect of the news

story. The specific roles were chosen based on the news story: political and economics editors

for the Brexit story, political and foreign editors for the Turkey coup attempt story, and

Republican-party and Democratic-party editors in the US elections story.

The specific editing roles meant that each of these editors’ changes were, for the most

part, focused on sections related to their primary area of responsibility. For example, the

economics editor for Brexit made many of her edits in sections about implications of Brexit

and membership in the European single market, while the political editor covered the process

of electing a new prime minister. However, some news items were related to the areas covered

by both editors (e.g., the election of a new prime minister a�ecting market performance),

and therefore when one specific editor introduced such news items her edits often a�ected

sections that were primarily edited by the other editor.

The third team member was assigned the general editor role, and was responsible for
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adding news items that were not yet added by the specific editors, enhancing coherence and

enforcing a 3000 word limit. The general editor thus had to keep track of everyone’s edits

and edited sections related to all aspects of the story.

4.2.3 Conditions

Our experiment included three conditions, di�ering in the change awareness mechanism

used to share change information with team members. The three conditions were:

1. All: all of the changes made to the document since the participant’s last edit were

highlighted.

2. Random: a random subset of the changes was highlighted.

3. Personalized: a subset of the changes, considered most relevant to the participant using

MIP-DOI was highlighted.

We included the All baseline to reflect current systems which show all the changes made to

a document. This condition gives participants the possibility of reviewing all of the changes,

but imposes more coordination overhead than mechanisms that limit the amount of shared

information. Participants in the Random and Personalized were presented with a similar

(small) number of changes to review. We included the Random condition as a second baseline

to enable us to evaluate the impact of the personalized change selection independent of the

number of changes that had to be reviewed.

With both the Random and Personalized conditions, up to 5 changed paragraphs were

highlighted, with the limit that at most two-thirds of the changed paragraphs should be

highlighted. We did not make the number of highlighted changes entirely conditioned on the

total number of changes to avoid creating substantial di�erences in the number of highlighted

changes between these two conditions. We chose to restrict the number of highlighted changes
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to 5 as pilot studies determined the typical number of changes was 10-15, and we wanted to

enforce substantial filtering.

In all conditions, the changes chosen to share were highlighted using the visualization

style of Google Docs revision history view, which highlights modified text, marking deleted

text with strikethrough. We used di�erent highlighting colors for each of the editors.

Each team edited each of the three stories throughout the experiment, with each story

being assigned with a di�erent change awareness mechanism, thus enabling a within-subject

comparison of the change awareness approaches. Within each group, the assignment of a

condition to a story persisted throughout (e.g., in group 1 Personalized was used for Brexit,

Random for Turkey and All for elections; in group 2 All was used for Brexit, Personalized

for Turkey and Random for elections). This enabled us to evaluate the final summary that

was produced when a particular change awareness mechanism was used. The ordering of the

conditions and the assignment of conditions to stories across groups was counterbalanced (we

had 6 groups, covering the 6 possible combinations of condition-story assignments).

4.2.4 Procedure

We designed the procedure to reflect extended-duration collaborative writing and to

control the amount of information and number of changes that were introduced in each

revision. To this end, we had four rounds of editing, with each participant completing one

editing session in each round. To maintain a similar number of changes between each of the

editors’ sessions, the sessions were done in turns, with each editor returning to the document

after the two other editors completed their sessions. The general editor was the last to edit

in each round. Editing sessions were done remotely and were typically conducted one day

apart from each other for each of the editors. The overall duration of the study for each team

was 7–10 days during which all editors completed the four rounds of editing sessions, where

in each of the rounds they edited all three stories. Due to scheduling constraints, one of the
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Activity Time
Review news story 1 Round 1: 10 minutes; rounds 2-4: 30 seconds
Edit news story 1 12 minutes
Questionnaire news story 1 2 minutes
Review news story 2 Round 1: 10 minutes; rounds 2-4: 30 seconds
Edit news story 2 12 minutes
Questionnaire news story 2 2 minutes
Review news story 3 Round 1: 10 minutes; rounds 2-4: 30 seconds
Edit news story 3 12 minutes
Questionnaire news story 3 2 minutes
Final questionnaire Only at last round, 10 minutes

Table 4.2: The activities in each of the editing sessions.

groups completed only three editing rounds.

The duration of each editing session was limited to 12 minutes. During each session, the

specific editors were given 10 items to add to the story. The length of the editing sessions and

the number of news items were determined based on pilot studies, with the goal of creating a

task that would be hard to complete in the given time frame, while maintaining a reasonable

session length (up to an hour for completing the task for all three summaries).

Participants were not allowed to communicate with each other or to use the commenting

feature on the document. While co-authors in real-world settings have many ways to

communicate, we did not include any in the study because we needed a controlled environment

in which change awareness of team members did not depend on the particular communication

strategies of team members and was manipulated only by our experimental conditions.

Each editing session consisted of a cycle of three stages for each of the news stories,

summarized in Table 4.2: (1) reviewing the current summary, (2) editing the summary, and

(3) answering a questionnaire about their subjective experience.

In the reviewing stage, participants were first given time to read the current summary

without ability to edit. In the first session, participants were given 10 minutes to read the

current summary. In rounds 2–4, they were given only 30 seconds to review changes made
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to the document by their co-authors. The purpose of the short reviewing period was to

draw participants’ attention to the fact that their co-authors’ had made changes. The time

provided was intentionally short so that participants would not be able to review all changes

before beginning their own editing session. Participants were still able to review changes

later while editing the document.

In the editing stage, specific editors were given 12 minutes to incorporate 10 news items

assigned to them based on their roles. They were instructed to add as many of the items as

they could, while maintaining coherence (e.g., adding the information in an appropriate place)

and avoiding conflicts and redundancies. For instance, in Brexit, when adding information

about Boris Johnson deciding not to run for prime minister, the editor would also need to

remove information suggesting that Johnson is the leading candidate in the race. During

the editing stage, participants could still review the changes made by other team members.

For the first three groups who participated in the study, the highlighted changes were shown

on a separate, non-editable document, and participants could switch between editing and

reviewing by clicking a button. Because many participants in these first groups commented

that they would have preferred to have the changes highlighted on the document they were

editing, for the remaining 3 groups the highlighted changes appeared on the document they

were editing; they were instructed that they could remove the highlighting if they wished1.

General editors were given the news item lists of both specific editors, and were asked

to add any missing information and make any other required edits to make the summary

coherent. They were also asked to maintain a 3000 word limit, which meant they had to edit

even if the specific editors managed to add all the news items during their sessions.

The editing stage was followed by a questionnaire about their experience which is

described below. The process of reviewing, editing and answering the questionnaire was

1We did not find di�erences between the earlier and later groups and therefore analyzed them together
despite the di�erence in the way changes were presented.
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repeated three times (once for each news story).

After completing their last session, participants were asked to answer a final questionnaire

comparing the di�erent change awareness mechanisms (referred to as “highlighting methods”

when communicating with participants). Participants were provided access to the summaries

with the highlighted changes and were asked (for each summary separately) to identify up to

two highlighted changes that were relevant and helpful for them, and up to two highlighted

changes that were irrelevant and unhelpful. They were asked to comment on the ways in

which the relevant changes helped them. Participants were also asked to rank the highlighting

methods based on their preferences. Because participants did not know which method was

used for each news story, they were provided the associated story for each method (e.g.

“method 1 (Brexit)”).

4.2.5 Design and Analysis

We used a within-subject design: each team edited one summary in each of the conditions.

Each participant held a similar role (specific or general editor) in each of the three summary

tasks.

Our dependent measures consisted of both objective and subjective measures related to

participants’ performance and experience. Participants provided subjective responses about

the following aspects of the task at the end of each editing session for each summary in each

round. All questions are shown in Table 4.3:

• Teamwork (e.g., “I was able to build on my co-authors’ work”).

• Helpfulness of the shared changes (e.g., “seeing the highlighted changes helped me

ensure my edits align with others’ edits”).

• Workload assessment using the NASA TLX scale [Hart, 2006]. (For example, “How

mentally demanding was the task”; we omitted the physical demand question as it was
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irrelevant for our task).

For teamwork and helpfulness of changes statements, participants rated their level of

agreement on a 7-point Likert scale (1 = “strongly disagree”, 7 = “strongly agree”). Workload

questions (NASA TLX) were rated on a 7-point Likert scale (1 = “very low”, 7 = “very

high”).

In the analysis of perceived workload, we considered the sum of all 5 items in the NASA

TLX scale, which is common in the analysis of TLX measures [Hart, 2006]. To create a

consistent scale, we take the complementing value of the “success” measure, which is the only

positive item in the scale.

Our dependent measures also included the following performance measures:

• Coverage: the number of news items that were added to the summary.

• Quality: the quality of the final document in terms of consistency and coherency.

We measured coverage at the session level (i.e., the specific contributions made by a single

participant in a single session). Assessment of coverage was objective (was a particular factual

item incorporated into the summary or not) and was done by the authors. We measure

coverage only for specific editors because the number of news items incorporated by general

editors largely depended on the number of changes introduced by their team members.

We assessed the quality metrics for the final summary, which reflects the final product

of the teamwork. Assessing the quality was done by comparing the final document to the

initial document, and rating each paragraph that was added along the following dimensions

(each rated on a scale from 1=poor to 3=good): (1) whether the text is redundant with

other parts of the summary or conflicts with other information in the summary; (2) whether

the paragraph is coherent with the remainder of the section; (3) whether it appeared in an

appropriate section based on the section titles (e.g., information about May being elected

should appear in the section about the race for the new prime minister), and (4) whether it
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appeared close to other related information. The reason for considering (3) and (4) separately

was that in some cases an editor introduced text under an inappropriate section title, and

later another editor placed related news updates nearby. If so, we wanted to penalize the

new edit in terms of section location, yet acknowledge that it was rightfully located next to

relevant information.

The quality assessment was done by two judges, with each summary being evaluated

by a single judge, blind to condition. Both judges used the same assessment rubric, and

they calibrated their ratings by evaluating one of the summaries independently and then

comparing their evaluations. Their initial agreement was good (Krippendor�’s alpha of 0.7)

and they resolved any disagreements to be more aligned moving forward. One of the judges

was an author who was not involved in running the study and who had worked in the past as

a news editor. The other judge was an undergraduate student in the humanities. Because

we were interested in comparing the performance within each of the groups, we were more

concerned with having consistent rating for the three summaries that the same group edited.

Therefore, each of the judges evaluated all 3 summaries (Brexit, Turkey coup, US elections)

of 3 of the groups.

Analyses. Our analysis of subjective measures and of the objective coverage measure

is done on the data from the last round of the study. We focused on the last round as

we expected the personalized mechanism to take time to learn about participants’ areas

of responsibility. The quality assessment was done on the final summary as a whole, and

therefore reflects the teamwork throughout all rounds.

We analyzed the Likert-scale items and the number of items added (between 1–10) using

ordinal logistic regression. The main e�ects we considered were the condition and the editor

type, and we controlled for the topic of the news summary. We also included the participant

id (unique identifier of each participant) as a covariate as our study was a within-subject

design. Each participant id appeared three times in each analysis, once for each of the
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conditions. Thus, our model included the condition {All, Personalized, Random}, editor type

{Specific, General}, topic {Brexit, Turkey coup, US elections}, participant id {1,...,18}.

Ordinal logistic regression estimates the likelihood of obtaining a higher value of a

dependent measure given a change in the values of the independent variables. The fitted

model can be meaningfully interpreted by considering the odds ratio (OR) values of the

regression coe�cients of the independent variables2, which we report in the Results section.

For example, when estimating the e�ect of the study condition on participants’ workload, the

odds ratio value of All vs. Personalized was 8.8. This odds ratio value is interpreted as follows:

all else being equal (i.e., same topic, participant and editor type), the odds of reporting a

workload value that is higher than k (for any possible value of k) in the All condition are 8.8

times as large as the odds of reporting a value higher than k in the Personalized condition.

That is, participants are much more likely to experience higher levels of workload when seeing

all changes than with personalized change awareness.

To make interpretation easier, we always report odds ratio values greater than one. To do

this, we take the multiplicative inverse value of odds ratios lower than 1, and interpret them

as the odds ratio for obtaining a lower or equal value of the dependent measure (rather than

a higher value). For example, if we get an odds ratio of 0.5 for the likelihood of obtaining a

higher value, we convert it to an odds ratio of 5 for obtaining a lower or equal value. Odds

ratios can be interpreted as e�ect size, similar to Cohen’s d. Values between 1.5 and 3 are

interpreted as a small e�ect, between 3 and 5 as medium, and above 5 as large [Borenstein

et al., 2009, Chen et al., 2010].

When we observed a significant main e�ect, we re-ran the model to compute the significance

and e�ect sizes (odds ratios) of pairwise di�erences.

To account for multiple hypotheses testing, we adjusted p-values with the Holm’s sequen-

2Odds ratio values are computed by exponentiating the regression coe�cients, which estimate log odds
ratios.
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tially rejective Bonferroni procedure, which introduces fewer Type II errors than the simple

Bonferroni correction [Holm, 1979, Sha�er, 1995]. We did this separately for subjective and

objective measures. In post-hoc analyses we adjusted the p-values of pairwise comparisons

with the simple Bonferroni correction.

Some Likert-scale items were intended to measure the same construct. We combined

participants’ responses to those items if they had an acceptable Cronbach’s alpha (– > 0.7).

This resulted in combining the responses to the items “seeing the highlighted changes helped

me decide where to make my edits” and “seeing the highlighted changes helped me ensure my

edits align with others’ edits”, and combining the responses to the items “I was overwhelmed

by the changes to the document’s content” and “Keeping track of my co-authors’ edits was

di�cult.”

The quality measures were also analyzed using ordinal logistic regression (scales of 1–3),

and included as e�ects the condition, topic of the summary and the group that produced the

summary3. We combined the four quality ratings (Cronbach’s – = 0.83) into a single quality

measure.

Participants’ final ranking of the change awareness mechanisms was analyzed using the

nonparametric Friedman test.

4.3 Results

Table 4.3 summarizes the results of the study. While ordinal logistic regression does

not directly compare means, we show the mean values to illustrate the results. When a

statistically significant di�erence was found between two conditions, we report the odds ratio

values that quantify the di�erence between conditions.

3We did not find an e�ect of the judge on the ratings, so did not include it in our model.
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Measure Personalized
(Mean)

Random
(Mean)

All
(Mean)

Adjusted
p-values

Significant
pairwise di�er-
ences

Workload TLX (5–35, 5 is best) 18.2 17.8 21.6 0.001 P-A (OR: 8.88);
R-A (OR: 9.04)

Teamwork
measures

I was able to build on my co-
authors’ work with my edits.
(1 – 7, 7 is best)

3.76 3.65 4.12 0.46 -

I was overwhelmed by the
changes to the document’s
content; Keeping track of my
co-authors’ edits was di�cult.
(2–14, 2 is best)

7.29 6.82 7.94 0.0474 R-A (OR: 7.4)

Helpfulness
of changes

Seeing the changes made
by others helped me decide
where to make my edits ; See-
ing the changes made by oth-
ers helped me ensure my edits
align with others’ edits. (2–14,
14 is best)

7.59 7 7.47 0.49 -

Seeing the changes made by
others did not help me make
my own edits . (1–7, 1 is best)

3.12 4.29 4.06 0.024 P-A (OR: 6.5);
P-R (OR: 6.6)

Preferences Final preference ranking (1–3,
1 is best)

1.83 2.06 2.06 0.77 -

Performance
measures

Coverage (1–10, 10 is best) 6.92 6.92 5.67 0.04 P-A (OR: 4.8);
R-A (OR: 6.5)

Quality (1–3, 3 is best) 2.8 2.75 2.78 0.04 P-R (OR: 1.69)

Table 4.3: The means for each of the measures, and the Holm-Bonferroni adjusted
p-value of the test for the significance of the condition e�ect. In cases where the
di�erences were significant, the last column shows which pairwise comparisons of
conditions were statistically significant (P-A indicates a significant di�erences between
Personalized and All, R-A indicates a significant di�erences between Random and
All and P-R indicates a significant di�erences between Personalized and Random),
and the odds ratio (OR) of the di�erence.
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4.3.1 Workload

We observed a significant main e�ect of condition on subjective workload (‰2
(2,N=54) =

14.8, p = 0.001). Participants experienced significantly higher workload when seeing changes

in the All condition compared to either MIP (OR = 8.88, ‰2
(1,N=54) = 10.3, p = 0.006) or

Random (OR = 9.04, ‰2
(1,N=54) = 10.6, p = 0.003) conditions. The e�ects sizes for both

pairwise comparisons were large (OR > 5).

4.3.2 Teamwork-Related Items

We observed a significant main e�ect of condition on participants’ di�culty of keeping rack

with others’ work and their feeling of being overwhelmed by changes (‰2
(2,N=54) = 8.3, p <

0.05). Participants were more likely to report greater di�culty of keeping track of others’

changes in the All condition compared to Random and Personalized. The only statistically

significant pairwise comparison was between All and Random (OR = 7.4, ‰2
(1,N=54) = 7.5, p =

0.02).

We did not find significant di�erences in participants’ reported ability to build on their

co-authors work.

4.3.3 Helpfulness of the Shared Changes

With respect to the helpfulness of changes, we found a significant main e�ect of condition

(‰2
(2,N=54) = 10.2, p = 0.024). The shared changes were found more helpful in the Personalized

condition compared to both the All (OR = 6.5, ‰2
(1,N=54) = 7.2, p = 0.02) and Random

(OR = 6.6, ‰2
(1,N=54) = 7.3, p = 0.02) conditions.

To better understand the ways in which seeing changes helped participants accomplish

their editing tasks, we examined participants’ open-ended responses. At the end of the final

editing session, participants were asked to copy up to 2 highlighted changes that were relevant
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and to explain how each of the relevant highlighted changes helped them make their edits. A

common response among specific editors was that seeing others’ edits helped them navigate

the document, and that sometimes the highlighted edits addressed topics similar to some of

their news items, and thus seeing where they were located helped them decide where to add

new information. For example, one participants wrote “It helped me know where to place a

couple of my items and allowed me to check that certain info was updated”, while another

participant commented “I saw them [the changes] as a context for the news items I received

later.”

General editors commented both about the helpfulness in terms of deciding where to

place items and knowing which items were already added by their co-authors, e.g. “The first

edit was helpful because it informed me where in the document a lot of the political edits

were made (especially concerning Erdogan’s ’crackdown’) and seeing it also made me quickly

aware that I did not have to add that piece of information, which was included in one of the

lists.”

4.3.4 Preference Rankings

The Personalized mechanism was ranked best (M = 1.83), followed by All and Random

(both with M = 2.06), but this result was not statistically significant (‰2
(2,N=18)) = 0.5352, p =

0.765). While about the same number of participants rated All and Personalized as most

preferred (8 and 7, respectively), the ranking of All was more bimodal: 9 of the 10 participants

who did not choose All as most preferred, ranked it as least preferred. In contrast, 7 of the

11 participants who did not rank Personalized first, ranked it second. Random was ranked

first only by 3 participants, but was ranked second more often than All.

Interestingly, we did not find di�erent patterns in the ranking by general and specific

editors. We expected that general editors may prefer to see more changes because their role

required more awareness of the other editors’ work, but observed that half of them ranked
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All as most preferred while the other half ranked it as least preferred.

Participants were asked to explain their rankings. One participant who ranked Personalized

as most preferred commented, “since the edits were very concentrated for the Turkey summary

[Personalized condition], I ranked it as my most preferred method.” Another participant who

preferred Personalized commented about the summary which was associated with the All

condition that “When the edits were spread further across the summary, it was harder to

keep track of them all”. Some participants who preferred the All condition mentioned that

they liked seeing more changes, e.g., “I find seeing all of the co-editors’ changes helpful in

determining what to look for when correcting/adding information.”

4.3.5 Participants’ Performance

We observed a statistically significant e�ect of condition on the number of news items

added by participants (‰2
(2,N=36) = 6.3, p = 0.04). Participants added fewer items in the All

condition compared to both Personalized (OR = 4.8, ‰2
(1,N=36) = 3.96, p = 0.04) or Random

(OR = 6.5, ‰2
(1,N=36) = 4.86, p = 0.03).

We also found a statistically significant e�ect of condition on the quality of the final

summaries (‰2
(2,N=719) = 7.72, p = 0.04). Summaries produced in the Personalized condition

were significantly more likely to have higher quality rating than summaries produced in the

Random condition (OR = 1.69, ‰2
(1,N=719) = 7.56, p = 0.006). Other pairwise di�erences

between conditions were not statistically significant.

4.3.6 Personalized Sharing of Change Information

To better understand the way in which personalization was reflected by the changes

shared in the Personalized condition, we examined the MIP-Nets modeling the teamwork

in the di�erent groups. We illustrate the personalization of change sharing with examples
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of changes that were deemed relevant and irrelevant to di�erent editors as this summary

evolved.

Figure 4.1 shows the MIP-Net at the end of all rounds of editing of the Brexit summary

produced by group 6. Author nodes are shown in red, with ‘g’, ‘p’ and ‘e’ representing the

general, political and economics editors correspondingly. To make the network more compact,

we collapse all nodes in a section to a single “section node” (blue nodes). The weights on

edges connecting author and section nodes were computed by averaging the proximity of

the author to each of the paragraphs in the section. The weights on edges connecting two

sections were computed by averaging the proximity of all pairs of paragraphs in both sections.

The intensity of edges connecting pairs of nodes reflects the weight of the edge (darker edges

reflect higher weights).

The loose-coupling of the task can be seen in the MIP-Net, in that each editor node is

most strongly connected to nodes representing di�erent sections. The political editor is most

strongly connected with nodes representing sections 1 (“Supporters and opposers of leaving

the EU”), 4 (“Is the kingdom still united?”) and 5 (“A new conservative Prime Minister

to be announced”), which focus on political aspects of Brexit. In contrast, the economics

editor is most strongly connected with the nodes representing sections 6 (“Britain’s economy

awaits Brexit’s aftermath”) and 8 (“British taxpayer’s money to be directed to NHS?”) which

focus on economical aspects of Brexit, and section 10 (“Other implications of Brexit”), which

evolved to include economics related information during this group’s edits (e.g., it included a

news item about Obama warning against financial hysteria following the vote). While the

focus of the specific editors was on di�erent sections, note that the two specific editors also

overlapped in editing other sections, hence their activities were not entirely decoupled. The

proximity of the general editor to the various sections was more evenly distributed, which is

expected as that editor was responsible for the overall summary.

By capturing each editor’s unique focus, the MIP-Net enables personalized assessment of
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Figure 4.1: The final MIP-Net for the Brexit summary written by group 6, shown
at the section granularity level. Author nodes are shown in red (‘e’: economics
editor, ‘p’: political editor, ‘g’: general editor), section nodes are shown in blue. The
intensity of edges corresponds to their weights (darker edges have higher weight).
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relevance of edits to them. To illustrate, we consider the relevance assessments for two of the

news items which were added to the summary by the general editor during her second round

of editing:

1. “Morgan Stanley sources said that it had started the process of moving about 2,000

sta� based in London to either Dublin or Frankfurt. Ahead of the vote, the president

of the investment bank, Colm Kelleher, told Bloomberg that Brexit would be ‘the most

consequential thing that we’ve ever seen since the war”’

2. “Germany’s foreign minister says he hopes new British Foreign Secretary will want to

maintain a ‘sensible relationship’ with the European Union.”

The first item was considered relevant for the economics editor. It had a high degree of

interest because of its proximity to edits made by the economics editor; it appeared in the

section “Britain’s economy awaits Brexit’s aftermath” (blue node #6 in Figure 4.1) which

was substantially edited by the economics editor in previous editing sessions. This paragraph

was rated much lower in terms of relevance to the political editor, as its proximity to that

editor’s edits was much lower. In contrast, the second item, which appeared in a section

that discussed more of the political aspects of Brexit was considered relevant to the political

editor, but not to the economics editor.

These two news items exemplify cases in which edits were fairly clearly related to either

the economic or political aspects of the Brexit summary. However, some aspects of the story

required more tight coupling of edits. For example, the section “Britain to stay in the single

market?” (blue node #3) touched both on economy and politics related implications of

Brexit, and therefore both editors had relatively high proximity to this section. Similarly,

although the section “Britain’s economy awaits Brexit’s aftermath” (blue node #6) was

primarily edited by the economics editor, the political editor occasionally edited it too, for

instance when adding information about the G-20 summit which was already discussed in
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that section. In such cases, a news item added by one of the specific editors would have a

relatively high degree of interest to the other specific editor, despite the di�erences in their

areas of responsibility. We note that such dependencies take longer for the algorithm to learn

about.

4.4 Related Work

Change awareness mechanisms draw team members’ attention to changes others have

made to a shared artifact by marking those changes in some way. Tam & Greenberg [Tam

and Greenberg, 2006] provide a framework that describes the types of questions that can be

answered by change awareness mechanisms, such as where changes have been made, by whom

and when. The framework also describes information elements based on which a system

could answer these questions, including edit history, location history and authorship history.

Many current commercial tools provide CA mechanisms: Word’s track changes, Google

Docs suggest mode and revision histories, GitHub commits, Wikipedia revision history are

examples. These tools, however, typically show users all of the changes that were made by

their collaborators, which can lead to information overload.

Some prior CA approaches provide team members with change filtering options. For

example, PastDraw provides filtering options such as choosing the types of changes to show

(e.g., deletions, additions) and for which types of objects to display changes [Tam and

Greenberg, 2006]. Prinz et al. proposed “anticipative” CA mechanisms [Prinz et al., 2010],

which allow team members to specify ahead of time the changes they would like to be notified

about (for example, letting a user know when a document was opened by someone). In the

context of collaborative writing, flexible Di�-ing [Neuwirth et al., 1992] provides users with

ability to filter changes based on features such as the granularity of the edits.

While these approaches can help reduce information overload, they require manual input
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from the users in selecting the changes to show. In contrast, the intelligent personalized

change awareness mechanism we developed reasons about the relevance of changes to users

and does not require that users manually specify the types of changes they are interested in.

We use the same types of information elements described by Tam & Greenberg, in particular

the edit history, but in a di�erent way: rather than using the edit history only to extract

change information, it is used by the system to learn about the interests of team members,

the task allocation among collaborators and the dependencies between the tasks.

Most closely related to our approach are methods for filtering notifications in software

development settings. The NeedFeed system [Padhye et al., 2014], for example, models

code relevance for developers by analyzing “touch histories” (which classes a developer has

modified) and using more complex history-based classifiers. Similarly, Holmes and Walker

[2010] proposed a recommendation approach to filter notifications about change events based

on deployment dependencies. Their approach uses various code features and code ownership

analysis. Omoronyia et al. [2009] developed a system that aims to enhance collaboration

awareness by showing tasks, developers and artifacts that are considered relevant to a user

given their current context.

These software development approaches are similar in spirit to our approach for person-

alized change awareness, but they rely heavily on the explicit structure that is available

in software programs (e.g., class dependencies, code documentation, method call graphs,

use cases). In many domains, however, there is much less explicit structural information.

For instance, in writing there may be a hierarchical section structure, but the dependencies

between sections are much less apparent than in code. In addition, the evaluations of these

systems assessed the relevance of the identified changes based on code revision histories, but

did not directly evaluate the benefits that these approaches provide to the teamwork.

Other relevant prior work includes visualization tools that support distributed software

development by creating visual representations of software artifacts and development activi-
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ties [Froehlich and Dourish, 2004, de Souza et al., 2007, Jakobsen et al., 2009, De Souza et al.,

2005, Gutwin et al., 2004]. In contrast to the personalized CA approach, these visualizations

help users be aware of other artifacts and people who might be a�ected by their work rather

than trying to draw their attention to relevant changes. Importantly, they do not create

personalized views. Similarly to the systems described above, they also rely on the available

structural information in software development.
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Chapter 5

GoalKeeper: Supporting Care Plan

Management

Integrated team-based care plans provide a shared context for complex care teams and

improve care coordination. However, current healthcare systems do not support the use of

such care plans. Electronic medical records support linear processes rather than dynamic

coordination processes [O’Malley et al., 2010]. They do not enable team members to define

partial plans that can be expanded and revised over time. Our study of care teams (described

in Chapter 2) revealed that team-based care plans require continuous revisions as a result of

changes in patients’ conditions, and thus quickly become obsolete if they are not updated. In

addition, collecting information about patients’ progress toward goals in a consistent manner

was also found to be challenging.

This chapter describes the design and implementation of GoalKeeper, a system for

supporting the use of team-based care plans for complex patients. GoalKeeper enables

families and their care providers to define care goals for the child, specify actions that need to

be taken to make progress toward these goals. It further enables team members, in particular

the patient’s family, to track progress toward goals by recording status updates about the
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child’s condition. The chapter also presents an initial pilot study in which two families used

GoalKeeper to create and track care plans. GoalKeeper was found helpful for organizing care

activities and for making apparent when goals were accomplished or when progress was not

achieved, prompting users to take actions accordingly. However, study participants found it

challenging to continuously record information given their many other daily activities, and

also reported negative emotional impact of observing lack of progress toward goals.

5.1 Designing a System to Support Care Plan Use

The design of GoalKeeper was informed by our study of care teams. In addition to the

findings described in Section 2.2, we also elicited caregivers’ thought about technology for

supporting the use of care plans. At the end of the interviews we conducted with care team

members, we asked interviewees to reflect on ways technology might support care teams in the

use of care plans. At first, these conversations were entirely open-ended. Later, as patterns

began to emerge, we would bring sketches and mockups of designs based on the insights from

earlier interviews (e.g., the one in Figure 5.1). These initial designs were very rough, and the

discussions focused on the content of the system rather than interface design. The designs

included a list of goals, each with a description, responsible caregivers, status updates showing

progress towards the goal, and a list of pending actions. In the later conversations, we started

by asking interviewees what features they would like to see in such a system before revealing

the mockups, then showed them the mockups and discussed what they found useful in them

and what was missing. In many cases, showing the mockups spurred additional reflections on

problems in complex care, concerns about introducing such a system and expected benefits

of the system.

Before discussing a care plan support system with parents, we asked parents about the

information they currently track and the tools they use to do so. Parents reported keeping
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Questions and Concerns 
 

Contact 
Team 

My pending actions 

Schedule physical therapy  

Get new feeding tube 

Recommendations 

Add Update Skip 

Feed from bottle 
 
Good growth 
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Add Update 2 pending actions 
 
3 pending actions 
 
1 pending action 

Add new goal 

Add Update 

Add Update 

Goal                                    actions                         status trend 

Would you like to update today’s 
feeding status? 

Figure 5.1: An example screen mockup of GoalKeeper

track of a variety of information, such as food pump settings, medication doses, ventilation

settings, results of blood tests and contact details of care providers. They use a variety of tools

to track this information, including online tools (e.g., google calendar, notes applications)

and paper lists (e.g., lists of medications or contact details of providers). One parent reported

using online tools to store EMR notes, maintain a provider contact list and the appointment

schedule, taking notes and tracking height and weight. Another parent reported maintaining a

handwritten medication lists, and mobile apps for taking notes and tracking height and weight.

Another parent reported saving the paper summaries she receives from the neurologists and

test results documents. Many of the providers we interviewed said that parents often come

with big binders where they store their documents. Overall, parents did not have a unified

place where they could collect and track all of the information, highlighting the potential for

improved technology support.

With respect to the mockups presented, parents found the goal-oriented approach of the

design appealing. One said he particularly liked the idea of being able to “tag” a goal to

multiple providers and then sort goals based on tag to prepare for an appointment. Another
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parent liked being able to track the status of her child: “this would have been really helpful

when my daughter was in the hospital, especially being able to keep track of things.” Parents

added that they would like to have a place to write a short medical summary of their child’s

condition, which they would update every couple of months. They also wanted to have a

place to document questions and issues they need to remember to bring up in future visits.

Parents di�ered in how they envisioned using the system. One parent said she would

want her family to specify goals and have providers define actions required to achieve them.

She wanted providers to be accountable for their actions. Another parent wanted the system

to remind her of actions she is required to do rather than providers’ actions.

Given their experiences with tracking information, parents were concerned about the work

involved in providing status updates reporting the child’s status with respect to a goal (e.g.,

number of feeds each day) and whether the e�ort would pay o�. They were concerned that

providers would spend too much time during the visit looking at the computer system rather

than focusing on their child. They were also concerned that providers would not look at the

information between visits, especially the specialists. They emphasized the need to make

the system customizable and not overwhelming by having an option to hide more detailed

information.

As did parents, some providers were concerned about the burden of using another system:

“If there are three di�erent systems like this and we’re seeing patients with each di�erent

system and every time I go in, there’s a new system and I’m also having to document things

from the chart, it’s a no go. So I think the simplest format of this is actually providing a

patient facing system, because the doctors have their notes and so to a certain degree, they’re

going to have their system.”

Despite their concerns about the burden of using an additional system, providers saw

possible significant benefits of a care plan support system. One specialist thought that having

a system owned by the parents where they can keep track of their goals and what providers
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said to them would provide feedback for the provider to see what they have heard at the

encounter and create an opportunity to interact. She also thought that if family-oriented

goals were set by the family it would empower them. Another specialist said, “especially

because so many parents want a way to sort of synthesize that information and I think they

would really benefit from that [...] And if you have the parents synthesize it and putting it in

a language that they presumably would understand and then you sort of see it translated in

real time, I think that’s valuable.” That specialist suggested that taking a multidisciplinary

view in such a system would be useful, as it will be more similar to how parents view the

information, as opposed to the medical organ system based organization: “If you explain it

for the family, neurology and pulmonary, it does provide a little simplicity in terms of they

know what questions to ask you, but that may not always be doing them a service, because

the way we group things is a little artificial to understand.” He added that synthesizing

information can help physicians see what other providers are doing and thinking.

Therapists thought tracking goals with a computer system would be more e�cient than

tracking currently is, “if you’ve met a goal you could write a new one right away. You wouldn’t

have to wait.” One therapist was concerned that it could be a negative thing: “They’re [the

parents are] seeing all these curves going down”. However, she said that noticing the decline

could raise a “red-flag” in time and draw the attention of the care team to the problem.

5.2 The GoalKeeper System

Based on our study findings, we have designed a system, called GoalKeeper, to support

the creation, monitoring and revision of care plans. GoalKeeper is designed to be “owned”

by parents, rather than by care providers, for the following reasons: (1) The team is built

around the family who care for the patient at all times. (2) Giving the family control of the

care plan can empower them and help them interact with professional members of the care
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team. (3) Providers are already overwhelmed by demands for them to input information into

existing systems. (4) This choice preserves privacy by enabling parents to decide who can

access GoalKeeper’s information about their child.

In accordance with the Packard report recommendations for care plans and based on the

SharedPlans specifications for collaborative activities, the main constructs in GoalKeeper are

goals, actions to be taken towards accomplishing the goals, and status updates for monitoring

progress with respect to goals. We note that these constructs are relatively simple compared

with AI planning representations such as hierarchical task networks [Erol et al., 1994] which

include more complex hierarchies. We chose to not use a deeper hierarchy of goals and

actions based on discussions with providers, as the simpler representation matched the level

of information that providers need to share and they were concerened that more complex

representations will introduce unneccessary complexity and might make the system less

usable.

GoalKeeper provides a platform for team members to create, share, monitor and revise

the care plan. Team members can set care goals for the patient and specify actions that

should be taken to achieve each a particular goal. They can specify the set of team members

that is associated with each goal. The main view of GoalKeeper, shown in Figure 5.2 lists

the currently active goals, taken from the care plan example provided in Section 2.1. For

each goal, the following information is shown: a general description of the goal (e.g., “get

Alex into day care in the next two months”), a graph showing progress toward the goal based

on recent status updates, a list of the care team members associated with the goal and a list

of pending actions associated with the goal. New goals can be added using the form shown

on the right side of Figure 5.2.

Team members can view more details about a particular goal and add actions and status

updates by going to that goal’s page (by clicking on the title of the goal or the “view this goal”

button). Figure 5.3 shows the page for the “take milk by mouth” goal. The top of the page
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Figure 5.2: The “Goals” page. Displays the current goals for the patient.

shows a graph based on the status updates recorded for the goal, in this case, milk intake.

Below the graph, the left side lists the recent status updates along with any notes added

by the parents; the right side shows a list of the pending and recently completed actions

associated with the goal. Team members can add status updates and actions using the forms

at the bottom of the page.

The “Actions” page, shown in Figure 5.4, aggregates the actions from all the active goals.

The goal to which each action is associated is listed along with the description of the goal.

Users can mark actions as completed or remove them, as well add new actions using the form

on the right side.

In addition to specifying and revising the main components of the care plan, i.e., the goals

actions and status updates, GoalKeeper also includes a Profile page (shown in Figure 5.5)

which provides a high-level summary of the patient’s condition and a Contact page (shown

in Figure 5.6) that lists the members of the care team.
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Figure 5.3: The individual goal page for the “take milk by mouth” goal. The page
shows status updates and actions related to the goal, and a list of the caregivers
involved in achieving the goal.

5.3 Pilot Study

We conducted a preliminary study of GoalKeeper to evaluate its use and to inform future

designs. This initial study focused on families’ use of GoalKeeper and did not directly involve

other care providers.

5.3.1 Participants

We recruited two families through “Mass Family Voices”, an organization that supports

families of children with special healthcare needs. For one of the families, the user of the
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Figure 5.4: The “Actions” page. Displays the pending and recently completed
actions across all goals.

Figure 5.5: The “Profile” page. Displays general information about the patient.

system was the mother of a teenage girl with special healthcare needs (henceforth we refer to

this study participant as P1). For the other family, the user was the patient herself, who was

19 at the time of the study and managed her own care (henceforth we refer to this study

participant as P2).
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Figure 5.6: The “Contacts” page. Displays contact details for caregivers.

5.3.2 Procedure

The participants were asked to use GoalKeeper for a duration of one month. At the

beginning of the study, we conducted a training session that lasted 90 minutes. The training

session included two parts: training on goal setting and training on the use of GoalKeeper.

The goal setting training was developed and delivered by one of our pediatrician collaborators

from Stanford, who joined the training session remotely. Participants were given a fictional

scenario of a complex patient and were asked to think about goals for this patient, actions

that might be needed to achieve these goals and metrics they might want to monitor to

assess progress toward these goals. Throughout this exercise, the pediatrician discussed with

the participants ways in which they can go about setting goals and identifying actions and

relevant metrics. Then, the parent participant was asked to think of goals for the child, and

the patient participant was asked to think of goals for herself. The goal setting training

materials are provided in Appendix A.1.

Following the goal setting training, participants were guided through the use of GoalKeeper.
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To ensure participants were able to use the system, they were asked to input the goals and

actions they wrote during the goal setting training such that they left the initial training

with a couple of goals and actions already set in GoalKeeper. Participants were also provided

with a tutorial to which they could refer later. Lastly, each participant was provided with a

tablet as compensation for their participation. The purpose of providing a tablet was that

participants could show the information in GoalKeeper to providers at clinic visits.

After the training, participants used GoalKeeper for a month. They were instructed

to record status updates at least a couple of times a week. After two weeks, participants

were sent a mid-study survey. At the end of the study, we conducted exit interviews with

participants (see survey and interview questions in Appendix A.2).

5.3.3 Findings

System use: Table 5.1 provides a quantitative summary of participants’ use of Goal-

Keeper. P1 used GoalKeeper consistently throughout the study. She created the first three

goals at the onset of the study and added the fourth goal a couple of weeks into the study

after she felt one of the other goals (trial of medication) was completed successfully. The first

goal was to complete a trial for a new medication. Actions for this goal included scheduling

appointments and picking up the medication. Status updates for this goal reported whether

her daughter took the medication or not. Other goals were related to the use of medical

equipment for improving physical movement (wearing Dynamic Movement Orthosis and a

splint). Actions for these goals were concerned with handling the equipment and scheduling

appointments, and status updates recorded the use of the equipment. The fourth goal was

added in the last week of the study, upon completion of the medication trial (the first goal).

The status updates for this goal reported the amount of time the patient exercised during

the day.

Typically, notes were added to each status update. In some cases, these comments added
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Goal # Actions # Status updates

P1

(1) Trial of medication 6 10
(2) Wear DMO 2 15
(3) Wear splint 2 10
(4) Daily exercise 0 3

P2

(1) Take medication 1 4
(2) Use blue light 0 3
(3) Class attendance 2 2
(4) Mood 0 2

Table 5.1: Participants’ use of GoalKeeper.

more details about the status that was recorded. For example, medication dosage was

recorded for status updates about medication trial and the duration of wearing the medical

device was reported for goals (2) and (3). In other cases, notes reflected positive or negative

sentiment about progress towards the goal. For instance “we are on a roll” or “UGH...we

can’t seem to make this work”. In several instances the notes described the obstacles the

family faced, for example “until we get a schedule, can’t seem to initiate wearing”.

P2 used the system in the first two weeks but later stopped using it when she got sick (we

discuss this later in this section). She created four goals at the beginning of the study. For the

first two goals, taking medication and using a blue light, status updates were binary (whether

or not the drug was taken/blue light was used). The third goal was to increase her class

attendance and for this goal P2 recorded the number of classes she attended and commented

on the ones she skipped. Lastly, P2 tracked her mood and recorded numeric values describing

her level of happiness. P2 typically did not add notes when recording status updates. The

few actions P2 inputted into the system were related to scheduling appointments.

In the mid-survey questionnaire, both participants rated the system as easy to use. They

both rated the goal setting feature (5 and 6 out of 7), action tracking feature (6 and 4 out of

7) and status update feature (5 and 7 out of 7) as useful. Neither participant made use of

the Contacts and Profile pages.

Goal setting process: P1 set the goals for her child by herself. She decided on the
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goals by thinking about the immediate needs of her child: “When I thought about the goals,

I really thought about what kind of some of the immediate needs were and kind of worked

from there, like things that I knew were kind of front and center for us. I mean there are

other longer range goals [...] I didn’t put in there.” One of the goals arose in a discussion

with a provider: “we were struggling [...] and then we had a visit with the provider and she

kind of set the course, and so then we had a goal. That really cemented the goal like okay

now we have, I think we have the tools we need to make this goal happen.” P2 set the goals

together with her therpist; she first came up with the goals for herself and then discussed

them with the therapist.

P1 commented on the goal setting process as an organizing mechanism for managing care:

“it made me more aware that goal setting requires organization of activities [...] you start

to get a little disorganized based on the scale of things that have to be done, and so the

organization of this in and of itself is just helpful in that now I don’t have to store it.”

Working toward goals and tracking progress: P1 found the recording of status

updates useful for quantifying more accurately progress. Moreover, tracking progress often

prompted her to try to think of new actions to take: “[...] as problems arose, I thought about

the goals and it was like ‘Oh this is not working, we are having a problem here’; now I have

an action that I can take related to that. I’ve got to call PT or I’ve got to follow up with

someone.”. Tracking the status updates also helped identify reasons for failing at working

toward a goal, which sometimes led to new strategies: “[...] when I can really start to see

patterns like, oh on certain days she doesn’t want to do it, is their school day too busy, what

are some creative ways that I can kind of try to inspire her to do something?” Reviewing the

status updates also helped P1 identify when a goal was achieved “Yeah we are done, we were

trialing it, we struggled when we started and then now we are successful.”

Both participants described how viewing the progress, and in particular the lack of

progress, toward a goal a�ected them emotionally. P1 commented that completing actions
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“felt like good, I got something done. So that part of it I liked.” Similarly, when P2 saw she

did well with respect to her goal to increase class attendance, it encouraged her to continue:

“[...] recording how often I was going to class made it easier for me to go to class, because I

didn’t want to break the chain. I had to continue going so that the graph would still look

good [...] it encouraged me to do it because I saw how good I was doing and I wanted to

keep doing good.” On the other hand, at a later time, the negative emotional e�ect when not

making progress caused P2 to stop using GoalKeeper: “I did start getting sick and I stopped

doing everything and all of my responsibilities, so then the graph went down and then I got

kind of upset so I stopped using it for a little bit [...] And then I stopped going to classes.

And then I didn’t want to like put it in.”

Maintaining engagement with GoalKeeper was sometimes challenging to both participants.

They commented that reminders would be helpful to ensure that they record information

consistently. P1 commented that although entering information daily sometimes felt like too

much “there is something to be said for the habit of entering it daily, because then once you

habituate it then it becomes like ‘Oh I’m willing to do it frequently’; it is easy to slip o� and

not do it at all.”

The version of GoalKeeper used in the study supported only numerical status updates.

Both participants used workarounds for status updates of di�erent nature. For example, they

used ’1’ and ’0’ to describe whether or not a medicine was taken.

Sharing information with providers: Both participants commented about how they

shared or envisioned sharing information from GoalKeeper with care providers. P2 had an

appointment with her therapist during the study commented that while she did not show

him GoalKeeper, it helped her report about her progress. When asked whether she would

like her therapist to be able to view her goals and progress, she said “I think during our

appointments it definitely would have been helpful. But I don’t know how I would feel about

them seeing it 24/7.”
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P1 did not have meetings with providers during the study, but thought that GoalKeeper

could also be useful for communication with providers: “I see the big value is that then

it can also be a connection to the provider. If that– if it’s a shared space”. However, she

commented that the use of the system with each provider would need to be defined within the

caregiver-family relationship because caregivers tend to be di�erent in the information they

are interested in, and families di�er in the level of detail they provide as well. Specifically,

she was concerned with respect to the patient summary feature that “people may just put in

unlimited amount of information in there. And then it is too much and then the doctors are

going to be like ‘I can’t, I’m not going to use this because there is more information in here

than I need’.”

5.4 Discussion

The initial pilot study of GoalKeeper suggests potential benefits of a care plan management

system, as well as challenges to making such a system useful and usable. We next summarize

the key results of the study and its limitations, and suggest possible directions for future

designs of GoalKeeper.

Key findings and design implications. According to study participants, GoalKeeper

helped them better organize their activities. More importantly, the need to explicitly describe

goals and track them made participants more aware of successes and failures, which in

some occasions led them to take action (e.g., adding a new goal when an existing goal was

achieved). This outcome is particularly encouraging, as patient (if the patient is old enough)

and family activation have been shown to have positive impact on health outcomes [Larson

and Reid, 2010]. Future versions of GoalKeeper could further support family engagement by

automatically drawing users’ attention to goals that may require attention, either due to lack

of progress or decline, or due to consistent positive improvement. In addition, GoalKeeper
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could incorporate new features to support families’ agenda preparation for clinic visits. For

example, it could summarize the status of di�erent goals and enable families to describe their

main concerns and questions prior to their meetings with care providers.

While participants saw value in tracking the status of goals and actions, they found the

need to input information on a daily basis burdensome. This problem might be alleviated to

some extent with the development of a mobile application version of GoalKeeper, eliminating

the need to open a tablet or a computer just to input a status update. Future designs could

also make it easier for users to remember to record status updates by enabling them to set

reminders or by proactively prompting them.

Applications for supporting behavior change in areas such as exercise and nutrition often

encourage users by highlighting their successes and reinforcing positive behaviors [Consolvo

et al., 2008]. In complex care settings, however, the progress or lack of progress toward

goals may be entirely out of the hands of the family in many situations (e.g., a drug not

working). Therefore, highlighting achievements will not always be possible. Our initial study

revealed that coping with negative outcomes can be di�cult. Both participants mentioned the

negative emotional e�ects of such situations, and one of them even stopped using GoalKeeper

for several days to avoid seeing her failure in achieving one of her goals. This presents an

important design challenge of maintaining engagement during hardships, and supporting

families in identifying situations in which the plan does not seem to work and in initiating a

discussion with relevant providers to modify the plan accordingly.

Limitations. The pilot study only involved two users and additional studies are required

to draw a wider range of design implications for future designs of GoalKeeper. In addition,

a key question not addressed in our pilot study is whether and to what extent providers

will engage with GoalKeeper. Engaging providers may be particularly di�cult as they are

already overwhelmed by their interactions with existing electronic medical records systems.

Addressing this design challenge requires further studies of providers’ needs and workflows.
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5.5 Related Work

In this section, we review prior work on patient self-tracking and sharing of patient

collected data with care providers. Background about the use of care plans in complex care

is described in Section 2.1.

Prior work on personal health information management (PHIM) has explored how patients

manage their medical records and proposed the design of systems to improve people’s ability

to manage their health information [Pratt et al., 2006, Piras and Zanutto, 2010]. A study

of cancer patients found that they often need to integrate personal and health information

from di�erent sources such as prescriptions, medical notes and emails. This fragmentation of

information makes it hard for patients to gain a better understanding of the overall picture

and understand what this information means for their health-related decisions [Pratt et al.,

2006].

Klasnja et al. [2010b] developed HealthWeaver, a mobile application for helping cancer

patients manage information about their care. This system enabled patients to track their

symptoms and prepare for clinic visits. A study of HealthWeaver [Patel et al., 2012] suggested

several design implications for tracking tools, including providing patients with guidance on

what metrics to track, enabling customization for di�erent patient needs, supporting reflection

and communication with clinicians by visualizing data in meaningful ways and giving patients

ownership over data tracking. Our design of GoalKeeper follows these guidelines. In addition,

it aims to support families in contextualizing actions and health status with respect to the

patient’s care goals. Mamykina et al. [2008] developed a health monitoring system for diabetes

patients. They showed that showed that self-tracking with their system led patients to adopt

an Internal Locus of Control, which has been shown to increase engagement and improve

health outcomes.

Chung et al. [2016] studied patients’ perspectives and collaboration practices around
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the use of patient-generated data in the care for patients with irritable bowel syndrome

or obesity. They found that patients had varied expectations about the use of generated

date, such as supporting diagnosis and personalization of their treatment, improving their

self-awareness and accountability and getting recognition from their providers for their e�orts.

They further examined several case studies of interactions between patients and providers in

which patient-generated data was shared, and suggest ways in which patient-generated data

can help patients and providers develop boundary negotiating artifacts [Lee, 2007]. These

artifacts can help push the boundaries between patients and providers and support their

collaboration. We intend GoalKeeper to also support collaboration between patients and

providers, as well as between di�erent care providers, by helping the team to establish and

track a mutually agreed-upon care plan.
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Chapter 6

Interactive Teaching Strategies for

Agent Training

When agents are face the task of learning how to act in a new environment, they can

benefit from the input of more experienced agents and humans. This chapter presents

interactive agent training heuristics in the context of a student-teacher reinforcement learning

framework. In this framework, an experienced “teacher” agent helps accelerate the “student”

agent’s learning by providing advice on which action to take next [Clouse, 1996, Torrey and

Taylor, 2013]. The student updates its policy based on reward signals from the environment

as in typical reinforcement learning, but its exploration is guided by the teacher’s advice.

Prior work has considered two modes of advice-giving in this framework: student-

initiated [Clouse, 1996] and teacher-initiated [Torrey and Taylor, 2013]. Torrey and Taylor

[2013] considered a setting with a limited advice budget and developed heuristics that guide

the teacher’s choice of advising opportunities. They demonstrated significant learning gains

when using these heuristics in empirical studies. While the amount of advice that the teacher

can provide was limited, their formulation assumed that the student’s current state is always

communicated to the teacher, and that the teacher continuously monitors the student’s

99



decisions until the advice budget runs out. These assumptions have significant drawbacks.

For human teachers, constantly paying attention diminishes the value of automation, imposes

cognitive costs [Miller et al., 2015] and can be simply unrealistic. Even if the teacher is a

computer agent, transmitting the student’s every state to the teacher can have a prohibitive

communication cost.

We investigated interactive student-teacher training, in which the student and the teacher

jointly decide when advice should be given. In these jointly-initiated teaching strategies, the

student determines whether to ask for the teacher’s attention, and the teacher, if asked to pay

attention to the student’s state, decides whether to use this opportunity to give advice, given

a limited advice budget. We begin by comparing the teacher-initiated and student-initiated

approaches experimentally, showing that heuristics for teacher-initiated training are more

e�ective at improving the student agent’s policy than student-initiated ones, but they require

more teacher attention. Then we demonstrate that the jointly-initiated teaching strategies

can reduce the amount of attention required of the teacher compared to teacher-initiated

strategies, while maintaining similar learning gains. Thus, our approach integrates the

teacher-initiated and student-initiated approaches, alleviating their disadvantages.

Collaborative approaches for assisting agents are particularly important for semi-autonomous

agents [Zilberstein, 2015] (e.g., self-driving cars), as such agents will have long-term interac-

tions with people and will have opportunities to continuously improve their policies based on

these interactions. Therefore, in addition to comparing the e�ectiveness of di�erent interactive

training strategies, we investigate the e�ect on learning performance of factors that may vary

across agent-human settings. In particular, our empirical evaluations analyze the e�ect of the

information communicated to the teacher and the quality of the initial policy of the student

on teaching outcomes.
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6.1 Student-Teacher Reinforcement Learning

The student-teacher framework [Clouse, 1996] includes two agents: a student and a

teacher. We assume that the teacher has already established a fixed policy for acting in the

environment, denoted fiteacher, whereas the student uses a reinforcement learning algorithm

to learn its policy, denoted fistudent. At any state s, the teacher can give advice to the student

by sharing fiteacher(s). This formulation requires that the teacher and the student share the

same action space but does not assume they share the same state representation. When the

student receives advice from the teacher, it takes the suggested action. That action is then

treated as any other action chosen by the student during the learning period, and Q-values

are updated using the same learning algorithm.

Similarly to Torrey and Taylor [2013], we specify a limited advice budget for the teacher,

but in contrast, we do not assume constant monitoring of the student by the teacher. Rather

than specifying an attention budget, we consider the attention required of the teacher as an

additional metric by which we evaluate the di�erent teaching strategies. We consider two

di�erent metrics for attention: (1) the number of states in which the teacher had to assess

the student’s state (to decide whether to give advice), and (2) the overall duration of the

teaching period (i.e., the last time step in which the teacher had to assess the student’s state).

Instead of fixing an attention budget, we choose to analyze the amount and duration

required by training strategies, because considerations about attention vary among di�erent

settings. For example, if a person is helping an autonomous car to improve its policy, the

overall duration of the teaching period does not matter because the person is always present

when the car drives. However, the person might not pay attention to the road at all times

and therefore there is a cost associated with monitoring the car’s actions to decide whether

to intervene. Moreover, if teaching in this setting requires the human to take control over the

car, then providing advice incurs an additional cost beyond monitoring the agent’s behavior
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(i.e., deciding whether to intervene requires less e�ort than actually intervening). Thus, in

this setting, we would like to minimize the number of states in which we require the teacher’s

attention as well as the number of times the teacher is required to give advice. In contrast, if

an expert is brought to a lab to help train a robot, teaching is done during a dedicated time

period in which the teacher watches a robot student. Here, minimizing the overall duration

of the teaching period will be more important than minimizing the number of states in which

attention is required.

6.1.1 Teacher-Initiated Advising

Torrey and Taylor [2013] proposed several heuristics for the teacher to decide when to

give advice, using the notion of state importance. Intuitively, a state is considered important

if taking a wrong action in that state can lead to a significant decrease in future rewards, as

determined by the teacher’s Q-values. Formally, the importance of a state, denoted I(s), is

defined as:

I(s) = max
a

Qteacher
(s,a) ≠ min

a
Qteacher

(s,a) (6.1)

Three variations of this heuristic were suggested: (1) Advise Important: giving advice

when I(s) > tti (where tti is a predetermined threshold); (2) Correct Important: giving

advice if I(s) > tti and fistudent(s) ”= fiteacher(s). This heuristic assumes that the teacher has

access to the student’s chosen action for the current state; (3) Predictive Advising: giving

advice if I(s) > tti and the teacher predicts that the student will take a sub-optimal action.

This approach assumes that the teacher does not know the student’s intended action and

instead develops a predictive model of the students’ actions over time. We do not include

Predictive Advising in our study to avoid the assumption that a person would develop a

predictive model of the students’ actions. Moreover, even with agent teachers, the ability to

predict an action will greatly depend on the size of the action space.
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We also evaluate the Early Advising baseline heuristics used by Torrey & Taylor. Using

the Early Advising heuristic, the teacher gives advice in all states until the entire advice

budget is spent. Similarly, with Early Correcting, the teacher advises the student in

any state in which fistudent(s) ”= fiteacher(s) until exhausting the advice budget (as Correct

Important, this heuristic assumes that the student’s intended action is communicated to the

teacher).

6.1.2 Student-Initiated Advising

We consider several heuristics for the student agent to determine when to ask the teacher

for advice. Similarly to correct important, the Ask Important heuristic uses the notion of

state-importance to decide whether the student should ask for advice. It uses the student’s

Q-values when computing Equation 6.1 and asks for advice when I(s) > tsi, where tsi is a

threshold set for the student agent.

The Ask Uncertain heuristic [Clouse, 1996] also considers Q-values di�erences (Equa-

tion 6.1) to decide whether to ask for advice, but di�ers from Ask Important in that it asks for

advice when the di�erence is smaller than a given threshold tunc (Equation 6.2). Intuitively,

low Q-value di�erence signals that the student is uncertain about which action to take. This

heuristic asks for advice when:

max
a

Qstudent
(s,a) ≠ min

a
Qstudent

(s,a) < tunc, (6.2)

where tunc is the given student’s threshold for uncertainty.

Chernova & Veloso [Chernova and Veloso, 2007] used the distance from a state to its

previously visited nearest-neighbor state as one measure of confidence that is based on the

agent’s familiarity with the state. We implement this approach in the Ask Unfamiliar

heuristic. In our settings states are described by a feature vector and we use Euclidean
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distance between feature vectors to determine the nearest neighbor. The student then asks

for advice when:

distance(s, NN(s)) > tunf , (6.3)

where NN(s) is nearest neighbor of state s.

6.1.3 Jointly-Initiated Advising

The student-initiated and teacher-initiated advising approaches both have shortcomings.

The teacher-initiated approach requires the teacher to always pay attention. On the other

hand, the advising decisions of the student are likely to be weak since they are guided by the

student’s noisy Q-value estimates. We design jointly-initiated advising approaches to address

these shortcomings by having the right division of tasks between the teacher and the student.

These approaches do not require the teacher to pay continuous attention while still utilizing

the more informed signal of the teacher about whether advice is beneficial in a given state.

In jointly-initiated advising, the student decides whether to ask for the teacher’s attention

based on one of the student-initiated approaches for asking for advice. Then, the teacher

decides whether to provide advice based on one of the teacher-initiated advising approaches.

We denote a jointly-initiated heuristic by [X–Y ], where X is a student heuristic for asking

the teacher’s attention and Y is a teacher heuristic for determining whether to give advice

in the current state. For instance, [Ask Important–Correct Important] means that the

student asks for the teacher’s attention when I(s)student > tsi. The teacher will then assess

the state and will give advice if I(s)teacher > tti.

Once the teacher decides to give advice, it will continue monitoring the student’s actions

until advice is no longer needed, and will later resume monitoring only when the student asks
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for the teacher’s attention next1. The motivation for this approach is that once the teacher is

already paying attention, it will be better able to judge whether additional advice is required

in consequent states, until the student takes the right course of action. In addition, it requires

less context-switching of the teacher.

6.2 Empirical Evaluation

Our experiments have five objectives: (1) Comparing student-initiated and teacher-

initiated strategies: we assess the relative strengths and weaknesses of the existing approaches;

(2) Evaluating the proposed jointly-initiated approaches: we compare the performance of

the joint heuristics to that of the best-performing prior heuristics, as determined by the first

experiment; (3) Exploring the e�ect of the student’s initial policy quality on performance:

in real-world settings, autonomous agents will likely start with some pre-programmed basic

policy rather than learn “from scratch”. Therefore, we evaluate the benefits of the teaching

sessions when varying the quality of the student’s initial policy. The quality of the initial

policy is varied in two ways: by varying the length of the student’s independent training

(without access to teacher advice) prior to the teaching session, and by pre-training the

student in limited settings that do not include some important features of the game, so

that the student cannot learn certain skills; (4) Exploring the e�ect of sharing the student’s

intended action with the teacher while sharing the student’s intended action can reduce the

use of the teacher’s advice budget, sharing the student’s action might be infeasible in some

domains, and also incurs additional communication costs. Therefore, we explore the extent

to which sharing the intended student action benefits learning; (5) Assessing the sensitivity

of the heuristics to the chosen thresholds: each of the heuristics used for deciding when to

1We evaluated the student-initiated approaches using this continued monitoring, but it did not lead to
significant di�erences.
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Figure 6.1: The Pac-Man Game.

advice uses a pre-defined threshold. We evaluate the robustness of these heuristics to the

selection of these threshold values.

6.2.1 Experimental Setup

We used the Pac-Man vs. Ghosts League competition [Rohlfshagen and Lucas, 2011] as

our experimental domain. Figure 6.1 shows the game maze used in our experiments. This

game configuration includes two types of food pellets: regular pellets (small dots) are worth

10 points each and power pellets (larger dots) are worth 50 points each. In addition, after

eating a power pellet, ghosts become edible for a limited time period. Pac-Man receives 200

points for each eaten ghost. A game episode ends when Pac-Man is eaten by a ghost, or after

2000 time steps. Ghosts chase Pac-Man with 80% probability and otherwise move randomly.

In each state, Pac-Man has at most four moves (right, left, up or down).

Due to the large size of the state space, we use a high-level feature representation for

state-action pairs. Specifically, we use the 7-feature representation from Torrey and Taylor
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[2013] implementation. Q-values are defined as a weighted function of the feature values

fi(s, a):

Q(s, a) = Ê0 +
ÿ

i

Êi · fi(s, a) (6.4)

The student agent employed the Sarsa(⁄) algorithm to learn the weights in Equation

6.4. We used the same parameter configuration as Torrey and Taylor [2013]: ‘ = 0.05, – =

0.001, “ = 0.999, ⁄ = 0.9. The teacher agent was trained with the same learning configuration

until its performance converged. Table 1 summarizes the heuristics for teacher-initiated and

student-initiated advising strategies studied in our experiments, together with the thresholds

we used for each of them. The thresholds were determined empirically.

6.2.2 Evaluation Metrics

We evaluate the student’s learning rate by assessing the student’s performance at di�erent

time points during training. Specifically, in each trial, we paused training after every 100 game

episodes and evaluated the student’s policy at that time point by averaging 30 evaluation

episodes (in which the student uses its current policy without exploring or updating its Q-

values). Because trials have high variance depending on the student’s eploration, we generate

a learning curve by aggregating 30 separate trials. For example, Figure 6.2 (left) shows

the learning curves comparing the performance of teacher-initiated and student-initiated

approaches. The x-axis represents training episodes, and y-axis values show the average

episode reward at that point in the training session.

For the teacher, cumulative attention is evaluated by averaging the number of states in

which the teacher was asked to monitor the student. We assume that the teacher completely

stops monitoring once the advice budget is fully used. Cumulative attention curves are

generated by averaging the total number of states in which the teacher’s attention was

required after every 100 game episodes, averaging these values over 30 trials. The left plot
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of Figure 6.2 shows a cumulative attention curve. As in the learning curve, the x-axis

corresponds to training episodes. The y-axis values show the number of states in which the

teacher’s attention was required up to a given time point.

The overall attention duration required from the teacher is the average number of states

it takes to use the entire advice budget. This metric can also be assessed by looking at the

x-value of the point in which the cumulative attention (y-value) flattens in the cumulative

attention curves. For example, in Figure 6.2 (right), when using the correct important

heuristic, the overall duration of required attention is 90 episodes, while early correcting only

requires an attention duration of 10 episodes as the advice budget gets used quickly.

To assess the statistical significance of di�erences in average rewards and cumulative

attention, we ran paired t-tests comparing the averages after each 100 training episodes.

Heuristic Initiator Threshold Shared Action
Early Correcting teacher None Yes
Early Advising teacher None No
Correct Important teacher 200 Yes
Advise Important teacher 200 No
Ask Important student 50 Yes
Ask Uncertain student 30 Yes
Ask Unfamiliar student Avg. distance to nearest neighbor Yes

Table 6.1: Student-initiated and teacher-initiated heuristics.

6.2.3 Teacher Vs. Student Heuristics

Figure 6.2 (left) shows the student’s learning rate when using heuristics for teacher-

initiated and student-initiated advising. When using the teacher-initiated approaches, the

teacher constantly monitors the state of the student until the advice budget runs out. When

student-initiated advising approaches are used, the teacher only monitors the student when

it is asked to advise. In all cases, the student’s intended action is available to the teacher

when giving advice.
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Figure 6.2: Average reward (left) and average attention (right) obtained by student-
initiated and teacher-initiated approaches. The student was trained for 100 episodes
prior to teaching, and actions were shared with teacher.

Substantially and significantly higher learning gains were obtained when using the teacher-

initiated Correct Important heuristic compared to all other heuristics (p < 10≠16). This can

be seen in Figure 6.2 (left). For example, after 200 training episodes with the teacher, an

average reward of 3055.64 is obtained when using Correct Important, compared to an average

reward of 2688.03 when using the next best heuristic. All other heuristics led to higher

learning rates compared to the no advice (green dashed line) condition (p < 10≠10). There

were no statistically significant di�erences between any other pairs of advising strategies.

The higher learning gains obtained when using teacher-initiated advising are expected;

the teacher has more knowledge than the student about the domain and has a good policy for

making decisions in it, which allows it to choose e�ective teaching opportunities. Consider the

game state shown in Figure 6.1 as an illustrative example. Intuitively, this is an important

state: if Pac-Man (the student) makes a wrong move, it might be eaten by a ghost; if,

however, it proceeds towards the power pellet, it will have an opportunity to earn a high

reward for eating a ghost. The teacher, which already knows the environment, can identify

that this state is important based on its Q-values, while the student might not yet have

enough information to come to this conclusion.

While the Correct Important heuristic results in the highest learning gains, it requires

significantly more teacher attention than the other approaches. This can be seen in Figure 6.2
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Figure 6.3: Average reward (left) and cumulative attention (right) obtained by
jointly-initiated and teacher-initiated advising. The student was trained for 100
episodes prior to teaching, and actions were shared with teacher.

(right), which shows the average cumulative attention required of the teacher; i.e., the total

number of states in which teacher’s attention was required up to a given episode. Teacher

attention is required in significantly more states when using Correct Important compared

to all other heuristics (72382.06 states compared to only 6358.86 states for Ask Unfamiliar,

which is the most attention-demanding student-initiated heuristic, p < 0.0001). In addition,

the overall duration of teacher’s attention (i.e., number of episodes until the advice budget is

fully used) is larger for Correct Important (90 episodes compared to less than 40 episodes

required when using any of the other heuristics).

6.2.4 Jointly-Initiated Teaching Strategies

The results reported so far show that the teacher-initiated advising strategies outperform

the student-initiated ones in terms of learning gains, but require more attention. In this

subsection, we present results from an evaluation of the jointly-initiated teaching strategies,

which aim to reduce the attention required from the teacher while maintaining the benefits

of student-initiated advising. We thus compare their performance with that of the top

performing teacher-initiated teaching strategy, Correct Important.

As Figure 6.3 (left) shows, when using the heuristic [Ask Important–Correct Important],

the student obtains similar rewards to those obtained when using Correct Important. The
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rewards at any given time point were on average slightly higher when using [Ask Important–

Correct Important], but while this di�erence was statistically significant (p = 0.008), it

was not substantial (average di�erence of 18.5 points). Figure 6.3 (right) shows that the

[Ask Important–Correct Important] heuristic required the teacher’s attention in fewer states

(64,711.47 states compared to 72,382.07 states). This di�erence was statistically significant

(p < 10≠5), and substantial. However, the overall duration of required teacher’s attention

when using [Ask Important–Correct Important] is 140 episodes (indicated by the x value

corresponding to the maximal total attention), compared to 50 episodes when using the

Correct Important heuristic. That is, while the jointly-initiated teaching strategy requires the

teacher’s attention in fewer states, the duration of the training session, and thus teacher’s

needed attention span, is longer.

To ensure that the performance is achieved as a result of the student’s choice of states

in which to ask for advice, we also evaluate a random baseline where the student asks for

the teacher’s attention with 0.5 probability (the average rate of asking for advice by the Ask

Important heuristic until the advice budget runs out). As shown in Figure 6.3, this random

baseline (Ask Random–Correct Important], dashed purple) does not perform as well as [Ask

Important–Correct Important]. Moreover, it requires significantly more cumulative teacher

attention, as well as a longer teaching period (both attention and learning gains di�erences

were statistically significant, p < 10≠5). This shows that while the student’s perception of

importance is not as accurate as that of the teacher, it is still useful for identifying advising

opportunities.

The strength of the [Ask Important–Correct Important] heuristic is its recall for important

states. While the student heuristic Ask Important has many false positives when trying to

identify important states due to the students’ inaccurate Q-values, combining it with the

teacher’s Correct Important heuristic, which assesses whether the state is truly important,

mitigates this weakness.

111



The other jointly-initiated teaching strategies, [Ask Uncertain–Correct Important] and

[Ask Unfamiliar–Correct Important], lead to some improvement in learning rate compared to

the No Advice baseline, but perform significantly worse than Ask Random and require more

cumulative attention, because they rarely capture important states. That is, they su�er from

a high false negative rate when trying to identify important states, and therefore when the

teacher uses Correct Important in combination with these approaches, it typically decides

not to give advice (as the state is not important). This is evident by the long duration it

takes until the advice budget runs out when using these heuristics (Figure 6.3).

[Ask Uncertain–Correct Important] su�ers from a higher false negative rate because in its

essence, Ask Uncertain captures states with a small Q-value range rather than those with a

high one. While in some of these states the student might be uncertain of its actions, it might

also mean that none of the actions will lead to significantly decreased performance. [Ask

Unfamiliar–Correct Important] also su�ers from possibly missing important states and using

the advice when its impact is smaller, because unfamiliar states might not be important ones.

In addition, appropriately identifying unfamiliar states likely requires more sophisticated

domain-dependent similarity methods.

6.2.5 The E�ect of Student’s Initial Policy

The quality of the student’s initial policy may a�ect the e�ectiveness of di�erent advising

strategies. To gain insights into this relationship, we experimented with student agents that

di�er in the quality of their initial policies.

We observe similar trends and relative performance of the di�erent teaching strategies

when varying the length of the student’s independent training prior to the teaching session.

As the quality of the initial policy of the student improves (i.e., the student’s initial policy is

based on more independent learning episodes, in the same game settings), the performance

of the jointly-initiated and student-initiated teaching strategies that are based on state

112



Figure 6.4: Average reward (left) and cumulative attention (right) obtained by
jointly-initiated and teacher-initiated advising. The student was trained for 300
episodes prior to teaching.

Figure 6.5: Average reward (left) and cumulative attention (right) obtained by
jointly-initiated and teacher-initiated advising. The student trained for 150 episodes
prior to teaching in game without power pellets, and actions were shared with teacher.

Figure 6.6: Average reward (left) and cumulative attention (right) obtained by
jointly-initiated and teacher-initiated advising when the action is shared vs. when it
is not shared. The student was trained for 100 episodes prior to teaching.
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importance can better identify important states in which the teacher’s attention is required.

However, in general, the overall benefit of advising the student decreases, as there is less

room for improvement of higher-quality initial policies.

Figure 6.4 shows the performance of the jointly-initiated approaches and the Correct

Important heuristic when the student’s initial policy was established after 300 episodes of

individual training. While the overall trends are similar to those obtained when the initial

policy was determined after only 100 episodes (Figure 6.3), the reduction in the required

teacher attention when using [Ask Important–Correct Important] compared to that required

when using Correct Important increases when the student starts with a better initial policy.

For example, when the student was independently trained for 100 episodes, advising based

on [Ask Important–Correct Important] required attention in 7670.6 fewer states than advising

based on Correct Important; the di�erence in required attention increased to 92162.6 states if

the student was trained for 300 episodes independently. In addition, when the student had

longer independent training, the overall attention duration when using [Ask Important–Correct

Important]) was only 10 episodes longer than when using Correct Important (compared to 50

episode gap when the independent training only lasts 100 episodes).

Teacher advice is especially beneficial when the student learns its initial policy in a limited

setting that does not allow the student to explore the complete state space. Figure 6.5 shows

the performance of the di�erent teaching strategies when applied to a student that developed

an initial policy in settings without power pellets. Without any advising (green bottom line),

the student’s policy does not improve, as it does not manage to learn about the positive

rewards of eating power pellets and consequently does not learn to eat ghosts. Since the

student has already established low weights for features that correspond to the possibility of

eating power pellets, without guidance it is not able to learn this new skill. However, with

teaching, it quickly improves its policy.

While [Ask Important–Correct Important] is still the best performing heuristic for jointly-
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initiated advising, the [Ask Unfamiliar–Correct Important] heuristic does relatively better

compared to settings in which the student was trained on the same game instance prior to

teaching. Although it is outperformed by the [Ask Uncertain, Correct Important] heuristic

in terms of student performance (after 400 episodes), it requires significantly less teacher

attention. The relative performance improvement for the Ask Unfamiliar approach for getting

the teacher’s attention can be explained by the fact that states that involve high proximity to

power pellets may appear less familiar (as they were not included in the initial independent

training), and also correspond to important states.

6.2.6 Sensitivity to Thresholds

All the heuristics for choosing when to teach require specifying a threshold (the collabo-

rative approaches require two thresholds, one for the student to decide whether to ask for

attention, and one for the teacher to decide whether to give advice). To test the sensitivity

of these heuristics to the specific choice of thresholds, we run experiments varying the their

values.

Figure 6.7 shows the learning rate of the student when the Correct Important (teacher-

based) heuristic is used with varied values. Reducing the advice threshold from 200 (the

value used in the experiments reported in previous sections) results in lower learning rate

(lighter blue dashed lines), as the advice budget is spent on less important states. However,

this also reduces the amount of teacher attention, as the advice budget is used up after fewer

episodes. In contrast, increasing the threshold (darker blue dashed lines) results in similar

and sometimes higher learning rate, but at the cost of significantly more attention (shown on

the right figure).

The collaborative heuristics require specifying two thresholds, one for the student to

decide when to ask for the teacher’s attention, and one for the teacher to decide when to

give advice. Figure 6.8 shows the performance of the collaborative approach when using
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Figure 6.7: Average reward (left) and cumulative attention (right) obtained by the
Correct Important teacher heuristic using di�erent thresholds. Student trained for
100 episodes prior to teaching.

di�erent thresholds for the student. Setting the threshold too high (Ask Important(150),

Correct Important (200)) decreases the learning rate of the student, as it does not ask for

help enough. Generally, increasing this threshold results increased required overall duration

of the teacher’s attention, as the student asks for help less frequently. Changing the teacher’s

threshold for giving advice in the collaborative approaches results in similar performance

trends to those obtained for teacher-based Correct Important heuristic shown in Figure 6.7.

Figure 6.8: Average reward (left) and cumulative attention (right) obtained by the
Ask Important, Correct Important teacher heuristic using di�erent thresholds for
asking the teacher’s attention. Student trained for 100 episodes prior to teaching.

6.3 Related Work

Our approach builds and expands on prior work studying the student-teacher reinforcement

learning framework [Clouse, 1996, Torrey and Taylor, 2013], as discussed in Section 6.1.
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Chernova and Veloso [2007] proposed a confidence-based approach in which a learning

agent asks for demonstrations when it is uncertain of its actions. In their approach, in contrast

to the teacher-student framework, the agent only learns from the expert demonstration without

receiving a signal from the environment. Judah et al. [2014] proposed a framework for active

imitation learning, in which an agent can query an expert for its policy for a given state. They

also assumed that the learning agent does not receive a reward signal from the environment.

Furthermore, they assumed that the agent can simulate trajectories and does not query for

demonstration during execution. Rosenstein et al. [2004] proposed a supervised actor-critic

RL framework in which a supervisor’s action is integrated with a learning agent’s action. In

contrast to our work, they assume a continuous action space. Gri�th et al. [2013] proposed a

Bayesian approach for integrating human feedback on the correctness of actions to shape

an agent’s policy. Rosman and Ramamoorthy [2014] developed methods for deciding when

to advise an agent, but assume teachers have access to a knowledge base of common agent

trajectories.

Our motivation for aiming to reduce the attention required from the teacher is rooted in

prior research on human-agent interaction and human attention. These works have developed

methods for detecting human attention and for incorporating it into agent decision making,

taking into consideration the limited attention resources available to people as well as the costs

of interruptions [Horvitz et al., 1999, 2003]. Adjustable autonomy approaches take into account

the user’s focus of attention when deciding whether to act autonomously or transfer autonomy

to the user [Tambe et al., 2002, Goodrich et al., 2001]. Models of human attention are also key

in developing approaches for supporting humans supervising autonomous systems [Cummings

and Mitchell, 2008, Fong et al., 2002].
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Chapter 7

Conclusion & Future Directions

Teamwork enables people to accomplish complex tasks by drawing on team members’

di�erent expertise and dividing the work among collaborators. However, teamwork also incurs

a coordination overhead as team members need to be aware of activities of others if those

activities interact with their individual actions. Lack of awareness about interacting activities

can lead to coordination failures and prevent the team from achieving their goals.

This thesis presents a study of complex care teams that uncovered a set of teamwork

characteristics that make coordination particularly challenging: Flat team structure, Loose-

coupling of activities, Extended-duration of the teamwork, Continuos revision of plans, and

Syncopated time scales (FLECS). It identifies several opportunities for technology to support

such teamwork. In particular, the thesis focuses on developing intelligent information sharing

mechanisms that reason about the collaborative activity to identify the subset of information

that is relevant to each of the team members. It argues that personalizing the sharing of

information to di�erent team members can limit the amount of information they need to

review, and can therefore reduce coordination overhead and improve team productivity.

One major contribution of this thesis is Mutual Influence Potential Networks (MIP-Nets),

a new representation that models collaborative activities without relying on an explicit

118



model of the team’s plan. In MIP-Nets, team members and the objects they interact with

are represented as nodes. The weights on edges between nodes are updated over time to

reflect the extent of interaction between team members and objects, as well as the extent of

interaction between di�erent objects. The thesis defines a new algorithm, MIP-DOI, which

uses MIP-Nets to quantify the degree of interest that di�erent team members are expected

to have in changes made to objects.

The thesis further describes the design and implementation of a personalized change

awareness mechanism for supporting collaborative writing. In contrast with the currently

prevalent approach of presenting authors with all of the changes made by their collaborators

(e.g., using track changes features), the personalized change awareness mechanism used

MIP-Nets and MIP-DOI to show authors edits made by others deemed most relevant to

them.

An evaluation of the personalized change awareness mechanism demonstrates the benefits

of personalizing information sharing, and thus supports the thesis of the dissertation. The

personalized mechanism was compared with two baselines: a change awareness mechanism that

showed all of the changes, and a change awareness mechanism that showed the same number

of changes as the personalized mechanism, but selected the changes to share at random.

Compared to the mechanism that presented team members with all of the changes, the

personalized mechanism resulted in significantly reduced perceived workload and significantly

increased productivity of team members, without reducing the quality of the work. Furthermore,

the changes shared by the personalized mechanism were found significantly more helpful than

changes chosen at random, and the quality of the teamwork was significantly higher with the

personalized than the quality of the work produced by teams when the random mechanism was

used.

In addition, the thesis presents the design and implementation of GoalKeeper, a system

which aims to support and enhance the use of team-based care plans for children with complex
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medical condition. It describes an initial pilot study with two families which demonstrated

the potential of GoalKeeper to support families by organizing care activities around goals

and more consistently tracking progress toward goals.

Lastly, the thesis introduces new advising strategies for student-teacher reinforcement

learning. By involving both the student and the teacher in the decision-making process, the

proposed advising strategies were able to reduce the attention required of the teacher while

providing similar learning gains as the best performing teacher-initiated advising strategies.

7.1 Future Work

This thesis demonstrates that intelligent information sharing methods can enhance human

teamwork by reducing coordination overhead. More broadly, the increasing use of collaboration

technologies presents a great opportunity for the development of intelligent systems that go

beyond simply providing an infrastructure for collaboration to support more e�ective and

e�cient teamwork. There are several exciting avenues extending the research presented in

this thesis toward the development of such intelligent systems.

The MIP-Nets approach can be adapted to incorporate additional inputs. Specifically,

domain knowledge can be used to initialize MIP-Nets. A first step in this direction was taken

in the implementation of the personalized change awareness mechanism, which made use of

the document structure. More general methods can be developed to augment MIP-Nets with

domain knowledge. For example, in the healthcare domain, medical ontologies could be used

in addition to observations of care providers’ interactions when constructing and updating

MIP-Nets.

Personalized change awareness mechanisms can be improved by designing mixed-initiative

interactions which will enable users to reveal more information about their goals (e.g., authors

revealing the section they plan to work on), and to provide the system with feedback about
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shared information. With these additional inputs, the system could adjust the algorithm to

better match the users’ interests and context.

Current change awareness mechanisms, including the personalized mechanism we de-

veloped, present team members with information about changes that were made by their

collaborators. An interesting direction for future research is enhancing team members’ aware-

ness of possible e�ects that their actions may have on other aspects of the team’s work.

For example, in a collaborative writing scenario, when an author edits the Results section

of a paper, the system might alert her that this change might create a conflict with the

text describing the results in the Introduction section. This approach suggests a shift from

providing only retrospective change awareness, to providing prospective awareness of the

implications of changes.

Additional studies of GoalKeeper are required to improve its design and extend its use to

the entire care team. Furthermore, the information sharing methods could be incorporated

into GoalKeeper, such that care providers will be not be overwhelmed with unnecessary

details about others’ plans, but will maintain appropriate context about the overarching team

plan.

7.2 The Bigger Picture: Integrated AI and HCI Re-

search

Developing intelligent systems that support and augment people’s work requires a thought-

ful combination of AI and HCI approaches that goes beyond simply integrating an existing

AI method into an existing interface. The research described in this thesis began with an

in-depth qualitative study of complex healthcare teams. The analysis of this study drew on an

AI theory which stipulates requirements for successful teamwork to derive design implications.

The formulation of a new computational information sharing problem and the assumptions
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about available inputs and desired outputs were based on the qualitative study of real-world

teams. Finally, the design and implementation of a personalized change awareness mechanism

drew on insights from HCI work on change awareness and integrated our new AI methods

to adapt the presentation of changes to di�erent users based on the inferred roles of team

members and task structure. By taking an integrated AI-HCI research approach, we were

able to develop a new conceptual method of personalized information sharing and implement

a system that reduced people’s perceived workload and increased their productivity, without

having detrimental e�ects on the quality of the teamwork.

More generally, AI and HCI research could benefit from drawing on theories and methods

developed in both fields. Specifically, HCI studies of people’s work in situ can inform AI

research by identifying real-world problems that could be alleviated by incorporating AI

methods and to ensure that intelligent systems work well with people. Importantly, by

understanding the settings in which AI methods will operate, AI researchers could also

ensure that the methods they develop make appropriate assumptions about the environment

in which they will be deployed. A better understanding of people’s workflows and needs

can help identify assumptions made by AI algorithms that do not hold in human settings.

Moreover, new interactions can be designed to help elicit inputs from people that would help

the algorithms adapt to their needs.

AI research can also inform work in HCI. Theories developed in HCI are often descriptive,

that is, they describe people’s behavior, cognitive abilities, etc. In contrast, AI theories are

typically prescriptive. They specify how computer agents should be designed to provide

various guarantees on the behavior of the system. As such, they can provide insight when

diagnosing failures in current settings and can inform the design of new systems. Further,

new AI capabilities can be utilized to support novel interactions.
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Appendix A

GoalKeeper Study Materials

A.1 Goal Setting Training
In the goal setting training, participants were given the following goal setting worksheet,

and were guided through the process of setting goals by a pediatrician.
Goal Setting Worksheet:
Agenda:

1. Set three goals
2. Assign providers to help you with these goals
3. Put these goals into GoalKeeper
4. Start using GoalKeeper
5. Complete survey on training session

Definitions:

• Goal: something that you want your child/you to be able to do for his/her/your health.
• Action: what you need to do to reach a goal.
• Status Update: tracks your progress toward a goal.
• Provider: any health care professional involved in your child’s care such as a physician,

nurse, physician assistant, occupational therapist, physical therapist.

Please use this worksheet to help you set goals for your child.

Example: Alex is a newborn diagnosed with Down Syndrome. As part of his syndrome
he has poor muscle tone and a hole in his heart that make it di�cult to gain weight and
grow, so he is fed through a tube down his nose.
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In the next week, I hope Alex can:

start taking milk through his mouth (also known as eating)

I will know Alex can eat if:

I can help Alex learn to eat by:

This is important to Alex because:

Summarize the above information into a goal for Alex:

The providers who can help Alex achieve this goal are (please include name and specialty):

Part 1: In the next week, I hope my child can:

I will know my child can do the above if:

I can help my child do the above by:

This is important to my child because:

Summarize the above information into a goal:

The providers who can help me achieve this goal are (please include name and specialty):

Part 2: In the next month, I hope my child can:

I will know my child can do the above if:

I can help my child do the above by:

This is important to my child because:

Summarize the above information into a goal:

The providers who can help me achieve this goal are (please include name and specialty):

Part 3: In the next two months, I hope my child can:

I will know my child can do the above if:
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I can help my child do the above by:

This is important to my child because:

Summarize the above information into a goal:

The providers who can help me achieve this goal are (please include name and specialty):

A.2 Survey and Interview Questions
Two weeks into the study, participants were asked to answer the following questions in an

online survey:

• How easy/di�cult is the system to use? [1 very easy – 7 very di�cult]
• Are there any aspects of the system that were especially hard for you to use?
• Were you able to provide all the information you thought important about your child’s

status?
• What additional information would you have liked to provide for the care team?
• On average, how much time each day did entering information in GoalKeeper require?
• How useful were each of the following features? [1 not useful at all – 7 very useful]

– Status updates
– Action tracking
– Contact list
– Patient summary (profile page)

• What features would you like added to GoalKeeper?
• Would you prefer using GoalKeeper on a mobile device?
• Do you have any other comments or suggestions?

At the end of the study, an exit interview was conducted with each of the participants.
The interview included the same set of question, but with open discussion with the interviewer
about their actual use of the system (based on log files). In addition, participants were asked
the following questions about their experience with goal-setting and GoalKeeper:

• Did you find goal-setting to be an e�ective way to organize care activities?
• How did you go about setting goals?
• What did you find most challenging about setting goals?
• Did you discuss the goals with your providers?
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• Did the use of goals and GoalKeeper a�ect your communication with providers in any
way?

• Would you have liked to keep using GoalKeeper after the study ended?
• Any comments, questions or suggestions?
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